摘要
基于地震子波提取问题的多维性,提出一种将改进粒子群算法与改进遗传算法相结合的优化算法。结合二者的优点,该算法初期采用改进粒子群优化算法,然后将所得个体最好值作为改进遗传算法初始种群继续进行优化,得到最优结果。最后,将该方法应用于地震子估计问题,试验结果证明了该方法的有效性和实用性。
A new method combining improved particle swarm optimization (PSO) with improved genetic algorithm (GA) is proposed to the multiimension of seismic wavelet estimation. According to the good velocity of PSO and the accuracy of GA, this new algo- rithm first adopts the improved PSO, then get the advanced results via GA. The effectiveness and superiority of the introduced method are demonstrated by experimental results of wavelet estimation.
出处
《微计算机信息》
北大核心
2007年第25期293-294,297,共3页
Control & Automation
基金
国家高技术研究发展计划项目(2001AA630501)
关键词
子波估计
粒子群优化算法
遗传算法
高阶累积量
wavelet estimation, particle swarm optimization (PSO), Genetic Algorithm (GA), high-order cumulants