摘要
文章通过对常规应力边界积分方程反复的分部积分,将应力表示成位移ui、面力ti及自然变量wi的积分形式,并推广到多域系统,建立了多域自然应力边界积分方程;该积分方程仅含几乎强奇异积分,同常规应力边界积分方程所含的几乎超奇异积分相比,奇异性降低了一阶;再利用正则化技术解析处理多域自然应力边界积分方程中的几乎强奇异积分,从而可以准确计算多域系统近边界内点的应力。
This paper studies the boundary integral equafion(BIE) for analysis of stress in multi-domain systems A new formulation termed as the natural stress BIE is obtained by means of integration by parts from the conventional stress BIE. The natural stress B1E reduces one order singularity in comparison with the conventional one for there are only the nearly strong-singular integrals in the natural stress BIE. Then the regularization algorithm is introduced to evaluate the nearly strong-singular integrals in the natural stress BIE. Thus, the natural stress BIE can be applied to calculating the stresses at the points very close to the boundary. A numerical example illustrates the efficiency of the presented method.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第9期1170-1173,共4页
Journal of Hefei University of Technology:Natural Science
基金
教育部博士点基金资助项目(20050359009)
安徽省自然科学基金资助项目(050440503)
关键词
多域法
应力边界积分方程
几乎超奇异积分
multi-domain technique
boundary integral equation for analysis of stress
nearly hypersingular integral