期刊文献+

导数场边界积分方程分析近边界应力分布

THE EVALUATION OF THE STRESS DISTRIBUTIONS IN THE DOMAIN CLOSE TO THE BOUNDARY BY THE DERIVATIVE BIE
下载PDF
导出
摘要 研究二维弹性力学问题边界积分方程,通过分部积分变换消除了常规导数边界积分方程中的超奇异积分,获得仅含强奇异积分的应力自然边界积分方程.对于近边界应力的计算,进一步运用正则化算法解析计算其中的几乎强奇异积分.较常规边界元法相比,应力自然边界积分方程可以求解离边界更加接近的内点应力值.算例证明了文中方法的可应用性和有效性. This paper studies the boundary integral equations (BIE) in the elasticity problems. A series of transformations are performed to the displacement derivative BIE in order to eliminate the hypersingular principal value integrals. Hence, a new stress natural BIE is developed, in which there only exist the strongly singular integrals instead of the hypersingular integrals in the conventional stress BIE. Furthermore, when a source point tends to the boundary, the small dominant factor leading to the nearly strongly singular integrals in the natural BIE is removed from the integral representations by the integration by parts, so that the values of the singular integrals are accurately calculated. Numerical examples demonstrate that the natural BIE can successfully determine the stress distributions in the domain much closer to the boundary in comparison with the conventional BIE.
出处 《固体力学学报》 EI CAS CSCD 北大核心 2007年第3期249-254,共6页 Chinese Journal of Solid Mechanics
基金 教育部博士点基金会(20050359009) 安徽省自然科学基金(050440503)资助.
关键词 边界元法 自然边界积分方程 弹性力学 几乎奇异积分 BEM, natural BIE, elasticity, nearly singular integral
  • 相关文献

参考文献12

  • 1Tanaka M,Sladek V,Sladek J.Regularization techniques applied to boundary element methods[J].Applied Mechanics Reviews,1994,47(10):457-499.
  • 2Huang Q,Cruse T A.Some notes on singular integral techniques BE analysis[J].International Journal for Numerical Methods in Engineering,1993,36(15):2643-2659.
  • 3Cruse T A,Aithal R.Non-singular boundary integral equation implementation[J].International Journal for Numerical Methods in Engineering,1993,36:237-254.
  • 4Sladek V,SladekJ.Non-singular boundary integral representation of stresses[J].International Journal for Numerical Methods in Engineering,1992,33:1481-1499.
  • 5Sladek V,Sladek J,Tanaka M.Regularization of hypersingular and nearly singular integrals in the potential theory and elasticity[J].International Journal for Numerical Methods in Engineering,1993,36:1609-1628.
  • 6Luo J F,Liu Y J,Berger E J.Analysis of two-dimensional thin structures (from micro-to nano-scales)using the boundary element method[J].Computational Mechanics,1998,22:404-412.
  • 7Liu Yijun.Analysis of shell-like structures by the boundary element method based on 3-D elasticity:formulation and verification[J].International Journal for Numerical Methods in Engineering,1998,41:541-558.
  • 8Chen X L,Liu Y J.An advanced 3D boundary element method for characterizations of composite materials[J].Engineering Analog Boundary Elements,2005,29:513-523.
  • 9牛忠荣,王左辉,胡宗军,周焕林.二维边界元法中几乎奇异积分的解析法[J].工程力学,2004,21(6):113-117. 被引量:13
  • 10Niu Zhongrong Wang Xiuxi Zhou Huanlin Zhang Chenli.A NOVEL BOUNDARY INTEGRAL EQUATION METHOD FOR LINEAR ELASTICITY--NATURAL BOUNDARY INTEGRAL EQUATION[J].Acta Mechanica Solida Sinica,2001,14(1):1-10. 被引量:4

二级参考文献8

  • 1Huang Q, Cruse TA. Some notes on singular integral techniques BE analysis[J]. Int. J. Numer Methods Eng, 1993, 36(15): 2643-2659.
  • 2Sladek V, Sladek J, Tanaka M. Optimal transformations of the integration variables in computation of singular integrals in BEM[J]. Int. J. Numer Methods Eng, 2000, 47: 1263-1283.
  • 3Ma H, Kamiya N. A general algorithm for accurate computation of field variables and its derivatives near the boundary in BEM [J]. Engineering Analysis with Boundary Elements, 2001, 25: 833-841.
  • 4Ma H, Kamiya N. A general algorithm for the numerical evaluation of nearly singular boundary integrals of various orders for two-and three-dimensional elasticity [J]. Computational Mechanics, 2002, 29: 277-288.
  • 5Lutz Earlin. Exact gaussian quadrature methods for near-singular integrals in the boundary element method [J]. Engineering Analysis with Boundary Elements, 1992, 9: 233-245.
  • 6Liu Yijun. Analysis of shell-like structures by the boundary element method based on 3-D elasticity: formulation and verification[J]. Int. J. Numer Methods Eng, 1998, 41: 541-558.
  • 7Luo JF, Liu YJ, Berger EJ. Analysis of two-dimensional thin structures (from micro- to nano-scales) using the boundary element method [J]. Computational Mechanics, 1998, 22: 404-412.
  • 8Liu Y J, Fan H. On the conventional boundary integral equation formulation for piezoelectric solids with defects or of thin shapes [J]. Engineering Analysis with Boundary Elements, 2001, 25(2): 77-91.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部