期刊文献+

一种鲁棒的多特征彩色图像检索新方法 被引量:5

A Robust Content-based Color Image Retrieval Using Multiple Features
下载PDF
导出
摘要 为了提高彩色图像检索的准确性,以回归型支持向量机(SVR)理论为基础,结合重要的图像边缘信息,提出了一种鲁棒的多特征彩色图像检索新方法。该方法首先利用回归型支持向量机(SVR)理论,对原始图像进行去噪处理及彩色边缘提取;然后将整个彩色边缘划分成局部网格区域,并分别计算出每个网格区域的颜色直方图和纹理直方图;最后综合利用上述网格区域的颜色直方图和纹理直方图来计算图像间内容的相似度,并进行彩色图像检索。实验结果表明,该方法不仅能够准确、快速的检索出用户所需图像,而且对光照、锐化、模糊等噪声攻击均具有较好的鲁棒性。 In this paper, a robust content-based color image retrieval algorithm using multiple features is proposed. This algorithm takes into consideration the important image edges and utilizes the support vector regression (SVR) theory. Firstly, the image denoising and color edge detection are performed using the SVR classification. Secondly, the whole color edge is divided into local grids; and the color histograms and texture histograms for local grids are computed as image features. Finally, the similarity between color images is computed by using a combined feature index based on the color histogram and texture histogram for local grids. Experimental experiments, including comparisons with many state-of-thearts, show the effectiveness of our algorithm in improving the retrieval performance( especially for noisy images).
出处 《中国图象图形学报》 CSCD 北大核心 2007年第10期1757-1760,共4页 Journal of Image and Graphics
基金 视觉与听觉信息处理国家重点实验室(北京大学)开放基金项目(0503) "图像处理与图像通信"江苏省重点实验室(南京邮电大学)开放基金(ZK205014)项目
关键词 图像检索 回归型支持向量机 彩色边缘 噪声 image retrieval, support vector regression( SVR), color edge, noise
  • 相关文献

参考文献6

  • 1Datta Ritendra, Li Jia, Wang James Z. Content-based image retrieval-approaches and trends of the new age [ A ]. In: Proceedings of the 7th International Workshop on Multimedia Information Retrieval, in Conjunction with ACM International Conference on Multimedia[C], Singapore, 2005 : 253 - 262.
  • 2Vogel J, Schiele B. Performance evaluation and optimization for content-based image retrieval [ J ]. Pattern Recognition, 2006, 39 (5) : 897 - 909.
  • 3Jeong S, Won C S, Gray R M. Image retrieval using color histograms generated by Gauss mixture vector quantization[J]. Computer Vision and Image Understanding, 2004, 9 (1-3) : 44 - 46.
  • 4Eauqueur J, Boujemaa N. Region-based image retrieval: Fast coarse segmentation and fine color description [ J ]. Journal of Vision Languages and Computing (JVLC), Special Issue on Vision Information System, 2004, 15 ( 1 ) : 69 - 95.
  • 5Ediz Saykol, Ugur Gudukbay, Ozgur Ulusoy. A histogram-based approach for object-based query-by-shape-and-color in image and video databases[J]. Image and Vision Computing, 2005, 23 (13): 1170 - 1180.
  • 6王熠,翟宏琛,梁艳梅,张思远,母国光.形态描述矩阵及其在彩色图像检索与识别中的应用[J].中国科学(E辑),2004,34(3):337-344. 被引量:12

二级参考文献19

  • 1Mokhtarian F, Abbasi S. Shape similarity retrieval under affine transforms. Pattern Recognition 2002.35(1): 31-41.
  • 2Osowsky S, Nghia D D. Fourier and wavelet descriptors for shape recognitions using neural networks-acomparative study. Pattern Recognition, 2002, 35( 1 ): 1949-1957.
  • 3Peng J Y, Yu B Z, Wang D K, Image similarity detection based on direction gradient angular histogram.Proc ICPR, 2002, 1(2): 147-153.
  • 4Aigrain O H, Zhang H, Petkovic D. Content-based representation and retrieval of visual media: a state-of-the-art review. Multimedia Tools and Applications, 1996, 3(1 ): 179-182.
  • 5Funt B V, Finlayson G D. Color constant color indexing. IEEE Trans Pattern Anal Machine Intell, 1992,17(5): 522-529.
  • 6Pratt W K. Digital Image Processing. New York: Wiley, 1991.
  • 7Liang Y M, Zhai H C, Chavel P. Fuzzy color-image retrieval. Optics Communications, 2002, 212:24?-250.
  • 8Cinque L, Ciocca G, Levialdi S, et al. Color-based image retrieval using spatial-chromatic histograms.Image Vision Computing, 2001. 19.
  • 9Rautiainen M, Doermann D. Temporal color correlograms for video retrieval. Proc ICPR, 2002, 1(2):267-272.
  • 10Cinque L, Ciocca G, Levialdi S, et al. Color-based image retrieval using spatial-chromatic histograms.Image Vision Computing, 2001.19

共引文献11

同被引文献38

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部