期刊文献+

动态多目标免疫优化算法及性能测试研究 被引量:6

Dynamic multi-objective immune optimization algorithm and performance test
下载PDF
导出
摘要 基于生物免疫系统的自适应学习、免疫记忆、抗体多样性及动态平衡维持等功能,提出一种动态多目标免疫优化算法处理动态多目标优化问题.算法设计中,依据自适应ζ邻域及抗体所处位置设计抗体的亲和力,基于Pa-reto控制的概念,利用分层选择确定参与进化的抗体,经由克隆扩张及自适应高斯变异,提高群体的平均亲和力,利用免疫记忆、动态维持和Average linkage聚类方法,设计环境识别规则和记忆池,借助3种不同类型的动态多目标测试问题,通过与出众的动态环境优化算法比较,数值实验表明所提出算法解决复杂动态多目标优化问题具有较大潜力. A dynamic multi-objective immune optimization algorithm suitable for dynamic multi-objective optimization problems is proposed based on the functions of adaptive learning, immune memory, antibody diversity and dynamic balance maintenance, etc. In the design of the algorithm, the scheme of antibody affinity was designed based on the locations of adaptive-neighborhood and antibody; antibodies participating in evolution were selected by Pareto dominance. In order to enhance the average affinity of the population, clonal proliferation and adaptive Gaussian mutation were adopted to evolve excellent antibodies. Furthermore, the average linkage method and several functions of immune memory and dynamic balance maintenance were used to design environmental recognition rules and the memory pool. The proposed algorithm was compared against several popular multi-objective algorithms by means of three different kinds of dynamic multi-objective benchmark problems. Simulations show that the algorithm has great potential in solving dynamic multi-objective optimization problems.
机构地区 贵州大学理学院
出处 《智能系统学报》 2007年第5期68-77,共10页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(60565002)
关键词 动态多目标优化 时变Pareto面 环境跟踪 自适应ξ邻域 免疫算法 dynamic multi-objective optimization time-varying Pareto front environment tracking adaptive -neighborhood immune algorithm.
  • 相关文献

参考文献11

  • 1[1]BINGUL Z.Adaptive genetic algorithms applied to dynamic multiobjective problems[J],Applied Soft Computing,7(2007) 791-799.
  • 2[2]FARINA M,DEB K,AMATO P.Dynamic multiobjective optimization problems:test case,approximations,and applications[J].IEEE Transactions on Evolutionary Computation,2004,8(5):425-442.
  • 3[3]ZITZLER E,LAUMANNS M,THIELE L.Speaii:improving the strength pareto evolutionary algorithm[A].Evolutionary Methods for Design,Optimization and Control with Applications to Industrial Problems[C].Athens,Greece,2001.
  • 4[4]DEB K,AGRAWAL S,PRATAP A,et al.A fast elitist nondominated sorting genetic algorithm for multiobjective optimization; NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
  • 5[5]JIN Y,BRANKE J.Evolutionary optimization in uncertain environments-A survey[J].IEEE Transactions on Evolutionary Computation,2005,9(3):303-317.
  • 6[6]AMATO P,FARINA M.An alife-inspired evolutionary algorithm for dynamic multiobjective optimization problems[A].In WSC[C].[S.l.],2003.
  • 7[7]HATZAKIS I,WALLACE D.Dynamic multiobjective optimization with evolutionary algorithm:a forward-looking approach[A].GECCO'06[C].Washington,USA,2006.
  • 8[8]DEB K,UDAYA B R N,KARTHIK S.Dynamic multiobjective optimization and decision-making using modified NSGA-Ⅱ:a case study on hydro-thermal power scheduling bi-objective optimization problems[R].KanGAL Report,2006.
  • 9[9]COELLO C A,CRUZ Cort N.Solving multiobjective optimization problems using an aritificial immune system[J].Genetic Programming and Evolvable Machine,2005,6:163-190.
  • 10[10]SHANG R H,JIAO L C,GONG M G,et al.Clonal selection algorithm for dynamic multiobjective optimization[A].CIS 2005[C].Berlin:Springer-Verlag,2005.

共引文献1

同被引文献82

  • 1窦全胜,周春光,徐中宇,潘冠宇.动态优化环境下的群核进化粒子群优化方法[J].计算机研究与发展,2006,43(1):89-95. 被引量:20
  • 2张著洪,钱淑渠.自适应免疫算法及其对动态函数优化的跟踪[J].模式识别与人工智能,2007,20(1):85-94. 被引量:14
  • 3刘淳安,王宇平.动态多目标优化的进化算法及其收敛性分析[J].电子学报,2007,35(6):1118-1121. 被引量:22
  • 4V S Aragon and S C Esquivel. An Evolutionary Algorithm to Track Changes of Optimum Value Locations in Dynamic Environments [ J]. Computer Science and Technology, 2004,4( 3 ) :27 -134.
  • 5M Farina and K Deb and P Amato. Dynamic Multiobjective Optimization Problems: Test Cases, Approximations and Applications [ C ]. Proc. IEEE, 2004, 8 (5) : 425 - 442.
  • 6K Deb, et. al.. Dynamic Multi - Objective Optimization and Deci- sion - Making Using Modified NSGA - II : A Case Study on Hydro - Ther - real Power Scheduling[ R]. KanGAL, 2006.
  • 7Z Bingul. Adaptive Genetic Algorithms Applied to Dynamic Multiobjective Problems [J]. Applied Soft Computing, 2007,7 ( 3 ) : 791 - 799.
  • 8I Hatzakis and D Wallace. Dynamic Multiobjective Optimization with Evolutionary Algorithm: A Forward - looking Approach [ C ]. Washington, USA, 2006. 1201 - 1208.
  • 9C A Coello Coello and N Cruz Cort. Solving Multiobjective Optimization Problems Using an Aritificial Immune System [ J ]. Genetic Programming and Evolvable Machine, 2005. 163 - 190.
  • 10R H Shang et al.. Clonal Selection Algorithm for Dynamic Multiobjective Optimization[ C ]. Springer Verlag Berlin Heidelberg, 2005. 846 - 851.

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部