期刊文献+

基于非参数局部线性核估计的混沌预测

Analysis of Chaos Forecasting Based on Local Linear Kernel Estimation
下载PDF
导出
摘要 将非参数局部线性核估计引入混沌时间序列预测,利用其优良的估计和预测能力,极大地提高了混沌时间序列的预测精度,并从理论上证明了一些传统的混沌序列预测方法仅仅是该方法的特殊形式。实证表明,该方法对典型的混沌时间序列可以做到非常精确的预测,对股票市场这类复杂经济系统也具有良好的预测能力。 This paper introduces method of local linear kernel estimation to the chaos time series forecasting to improve the forecasting accuracy. The judgment that the classical OLS method that describes the relationship between benchmark point and evolvement point is the particular form of the new method has been proved. The forecasting examples of Lorenz and stock trade volume series also demonstrate that the new method can get great forecasting accuracy for both typical chaos system and complex economy system.
出处 《系统管理学报》 北大核心 2007年第4期437-441,共5页 Journal of Systems & Management
关键词 混沌 预测 局部线性核估计 chaos forecasting local linear kernel estimation
  • 相关文献

参考文献12

  • 1[1]Kantz H,Schreiber T.Nonlinear time series analysis[M].Cambridge University Press,1997.
  • 2[2]Westerhoff F H.Greed,fear and stock market dynamics[J].Physica A,2004,343(2):635-642.
  • 3[3]Cajueiro D O,Tabak B M.Ranking efficiency for emerging markets[J].Chaos,Solitons and Fractals,2004,22:349-352.
  • 4[4]Serletis A,Shintani M.No evidence of chaos but some evidence of dependence in the US stock market[J].Chaos,Solitons and Fractals,2003,17:449-454.
  • 5[5]Babinec P.Stochastic resonance in an interactingagent model of stock market[J].Chaos,Solitons and Fractals,2002,13(9):1767-1770.
  • 6[6]Baptista M S,Caldas I L.On the stock market recurrence[J].Physica A,2000,234(4):348-354.
  • 7[7]Oh K J,Kim K.Analyzing stock market tick data using piecewise nonlinear model[J].Expert Systems with Applications,2002,22(3):249-255.
  • 8[8]Brachet M,Tain E,Tcheou J M.Scaling transformation and probability distributions for Financial time series[J].Chaos,Solitons and Fractals,12000,11(14):2343-2348.
  • 9[9]Sugihara G,May R.Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series[J].Nature,1990,344:734-741.
  • 10[10]Wang Hongchun.Complex dynamical behaviors of daily data series in stock exchange[J].Physics Letters A,2004,333(3-4):246-255.

二级参考文献10

  • 1D Buppert and M P Wand. Multivariate locally weighted least squares regression[ J]. The Annals of Statistics, 1994, Vol. 22, No. 3 :1346 - 1370.
  • 2Jianqing Fan. Local linear regression smoothers and their minimax efliciencies[ J]. The Annals of Statistics, 1993, Vol. 21, No. 1 : 196 -216.
  • 3Fan, J. Design-adaptive nonparametric regression [ M ]. J Amer Statist Assoc, 1992,87:998 - 1004.
  • 4Hansen L. Large sample properties of generalized method of moments estimators [ J ]. Econometrica, 1982,50 : 1029 - 1054.
  • 5White H A. Heterescedasticity-consistent covariance matrix estimator and a direct test for heterescedasticity [ J]. Econometrica, 1980, 48:817 - 838.
  • 6Adrian Pagan, Aman Ullah. Nonparametric econometrics [ M ].Cambridge: Cambridge University Press, 1999.78 - 150.
  • 7Whitney K Newey, James L Powell, Francis Vella. Nonparametric estimation of triangular simultaneous equations models [ J ].Econometrica, 1999,67 ( 3 ) : 565 - 603.
  • 8Joel L Horowitz. Semiparametric methods in econometrics [ M ]. New York : Springer, 1998.5 - 52.
  • 9Adonis Yatchew. Nonparametric regression techniques in economics[ J]. Journal of Economic Literature, 1998, Vol. XXXVI, June : 669 -721.
  • 10J Fan, I Gijbels. Local polynomial modelling and its applications[ M ]. New York : Chapman & Hall, 1996.57 - 159.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部