期刊文献+

PSO-BP模型在城市用水量短期预测中的应用 被引量:16

Application of PSO-BP Model in Short-Term Prediction of Urban Water Consumption
原文传递
导出
摘要 为解决现有的城市用水量短期预测BP神经网络法对初始权值敏感、易陷入局部极小点和收敛速度慢等问题,通过对城市时用水量数据特征的分析,应用基于全局随机优化思想的粒子群优化(PSO)算法对BP网络的初始权值进行优化,建立了PSO-BP城市时用水量预测模型.在算例分析中与传统BP神经网络预测法进行对比,发现该方法的收敛速度明显提高,且平均预测精度提高了2%,在用水量短期预测中非常有效. In order to overcome the over-fitting problem and the local minima problem of the BP neural network method, the PSO-BP prediction model concerned on the hourly urban water consumption was developed. The model was based on the analysis of the characters of the hourly urban water consumption data and the particle swarm optimization (PSO) algorithms with the global stochastic optimization idea. The experimental results indicated that the average prediction precision increased by 2 per cent, compared to the traditional BP method. It was also shown that this model was faster in computation and had better generalization performance, which proved to be effective in shortterm prediction of urban water consumption.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2007年第9期165-170,共6页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(5027806250578108)
关键词 城市用水量 短期负荷预测 粒子群优化 BP神经网络 预测模型 urban water consumption short-term load prediction particle swarm optimization BP neural network prediction model
  • 相关文献

参考文献14

  • 1Zhou S L,McMahon T A,Walton A,et al.Forecasting operational demand for an urban water supply zone[J].Journal of Hydrology,2002,259(3):189-202.
  • 2El-Keib A,Ma X,Ma H.Advancement of statistical based modeling techniques for short-term load forecasting[J].Electric Power Systems Research,1995,35(1):51-58.
  • 3Kalogirou S A.Applications of artificial neural-networks for energy systems[J].Applied Energy,2000,67(1):17-35.
  • 4Chiu C C,Cook D F,Kao J L,et al.Combining a neural network and a rule-based expert system for short-term load forecasting[J].Computers & Industrial Engineering,1997,32(4):787-797.
  • 5Beccali M,Cellura M,Lo Brano V,et al.Forecasting daily urban electric load profiles using artificial neural networks[J].Energy Conversion and Management,2004,45(18):2879-2900.
  • 6Liao G C,Tsao T P.Application of fuzzy neural networks and artificial intelligence for load forecasting[J].Electric Power Systems Research,2004,70(3):237-244.
  • 7Virgil C A.David R M.Multi-watfore method:A water demand forecasting system[C]//Optimizing the Resources for Water Management-Proceedings of the ASCE 17th Annual National Conference.Texas,1990:13-18.
  • 8Arrusr,Garadia.Intelligent system of computer-aided long-term water demand forecasting.Application in Algeria[C]//Proceedings of the 2nd International Conference on Computer Methods in Water Resources.Morocco,1991:159-171.
  • 9Wang Q,Heller M.Hybrid Box-Jenkins and neural network forecasting of potable water demand[C]//Proceedings of the 1996 Artificial Neural Networks in Enginering,ANNIE,96.Missouri:ASME,1996:801-807.
  • 10Beccali M,Cellura M,Lo Brano V,et al.Forecasting daily urban electric load profiles using artificial neural networks[J].Energy Conversion and Management,2004,45(18):2879-2900.

同被引文献154

引证文献16

二级引证文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部