期刊文献+

基于双质量-弹簧模型的仿袋鼠机器人间歇跳跃落地稳定性研究 被引量:2

Exploring Gait Stability of Kangaroo Robot Based on Two-Mass-One-Spring Model in Intermittent Touchdown Phase
下载PDF
导出
摘要 跳跃落地稳定性是跳跃机器人的关键技术。通过对仿袋鼠机器人跳跃运动稳定性分析,揭示了袋鼠跳跃稳定性的运动规律,提出了一种机器人跳跃动态稳定性的分析方法。考虑踝关节力矩作用,建立了仿袋鼠跳跃机器人双质量-弹簧动力学模型,采用能量法,分析给出了该跳跃机器人的动态稳定区域及其前、后边界稳定裕量的表达式,并结合实例,应用Matlab进行仿真计算分析,给出了袋鼠机器人保持落地稳定性时的腿部弹簧刚度系数、触地角及触地速度等参数之间应满足的关系和各取值范围。分析结果表明:仿袋鼠机器人的动、静态稳定区域不同,二者无重合域。 Aim. To our knowledge,there is as yet no paper in the open literature dealing with the subject stated in the title.We now present the preliminary results of our exploration.In the full paper,we explain in some detail our mathematical analysis and the analysis of simulation results.In this abstract,we just add some pertinent remarks to listing the three topics of explanation.The first topic is: the establishment of the model.In the first topic,keeping in mind the hopping characteristics of the kangaroo,we,in our two-mass-one-spring model,consider a robot's body as one mass and its two feet as another mass.The second topic is: the analysis of the robot's stability in the intermittent touchdown phase.In the second topic,we,using the energy method,derive two equations,given in the full paper,for calculating respectively the fore and back limits of the stability margin.The third topic is: the stability margin in the intermittent touchdown phase.In the third topic,we first derive the mathematical equations needed and then obtain simulation results——stability margin,spring stiffness coefficient,touchdown angle,and touchdown velocity——with Matlab toolbox.The simulations results,summarized in three figures in the full paper,show preliminarily that the dynamic and static stability regions of the kangaroo robot are completely different.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2007年第4期517-522,共6页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(50375120)资助
关键词 仿袋鼠跳跃机器人 双质量-弹簧模型 间歇性跳跃 落地稳定性 能量法 kangaroo robot,two-mass-one-spring model,intermittent touchdown,gait stability,energy method
  • 相关文献

参考文献12

  • 1Dawson T J,Taylor C R.Energetic Cost of Locomotion in Kangaroos.Nature,1973,246(11):313-314
  • 2PaiYi Chung,Patton J.Center of Mass Velocity-Position Predictions for Balance Control.J Biomechanics,1997,30(4):347-354
  • 3武明,季林红,金德闻,朱庆峰,王人成,张济川.基于能量的人体动力学平衡评价指标的仿真研究[J].清华大学学报(自然科学版),2002,42(2):168-171. 被引量:13
  • 4武明,季林红,金德闻,张济川.基于能量的人体动力学稳定性评价指标[J].清华大学学报(自然科学版),2003,43(5):640-643. 被引量:3
  • 5李钟泽.能量法在物理学中的应用[J].洛阳大学学报,1995,10(4):75-81. 被引量:3
  • 6Full R J,Farley C T.Musculoskeletal Dynamics in Rhythmic Systems a Comparative Approach to Legged Locomotion.New York:Springer-Verlag,1999,192o-205
  • 7Farley C T,Blickhan R,et al.Hopping Frequency in Humans:a Test of How Springs Set Stride Frequency in Bouncing Gaits.Journal of Applied Physio,1991(71):2127-2132
  • 8姜国华.人体解剖学.北京:清华大学出版社,2003
  • 9Rabinowicz A C,et al.Energy Efficiency of Kangaroo Locomotion as Characterized by Dynamic Optimization.12th Conference of the European Society of Biomechanics,Dublin,2000
  • 10Alexander R M,Vernon A.The Mechanics of Hopping by Kangaroos(Macropodidae).Journal of Zoology in London,1975(177):265-303

二级参考文献20

  • 1[1]Bauby C E, Kuo A D. Active control of lateral balance in human walking [J].J Biomechanics,2000, 33: 1433-1440.
  • 2[2]Colum D. M, Winter D A. Control of whole body balance in the frontal plane during human walking [J]. J Biomechanics, 1993, 26(6): 633-644.
  • 3[3]Winter D A, Patla A E, Frank J S. Assessment of balance control in humans [J]. Medi Prog Through Tech, 1990, 16: 31-51.
  • 4[4]Kuo A D. An optimal control model for analyzing human postural balance [J]. IEEE Trans on Biomedi Eng, 1995, 42(1): 87-101.
  • 5[5]Pai Yi-Chung, Patton J. Center of mass velocity-position predictions for balance control [J]. J Biomechanics, 1997, 30(4): 347354.
  • 6[6]Pai Yi-Chung, Rogers M W, Patton J, et al. Static versus dynamic predictions of protective stepping following waist-pull perturbations in young and older adults [J]. J Biomechanics, 1998, 31: 1111-1118.
  • 7[7]Pai Yi-Chung, Maki B E, Iqbal K, et al. Thresholds for step initiation induced by support-surface translation: a dynamic center-of-mass model provides much better prediction than a static model [J]. J Biomechanics, 2000, 33(3): 387-392.
  • 8[8]Pai Yi-Chung, Iqbal Kamran. Simulated movement termination for balance recovery: can movement strategies be sought to maintain stability in the presence of slipping or forced sliding [J]. J Biomechanics, 1999, 32: 779-786.
  • 9[9]Iqbal Kamran, Pai Yi-Chung. Predicted region of stability for balance recovery: motion at the knee joint can improve termination of forward movement [J]. J Biomechanics, 2000, 33: 1619-1672.
  • 10[10]Patton J L, Pai Yi-chung, Lee W A. Evaluation of a model that determines the stability limits of dynamic balance [J]. Gait and Posture, 1999, 9: 38-49.

共引文献16

同被引文献16

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部