期刊文献+

分布式存储结构的频繁闭合模式挖掘并行算法 被引量:3

Parallel Algorithm for Mining Frequent Closed Patterns On Distributed Memory Multi-Processors
下载PDF
导出
摘要 研究分布式存储结构下频繁闭合模式挖掘的并行化问题,针对频繁闭合模式的特点,提出了两阶段并行判断频繁模式闭合性的方法,基于串行算法FPclose和两种FP-tree的并行构造方式,分别给出了两个频繁闭合模式挖掘并行算法DP-FP和DL-FP,性能分析表明,这两个算法具有较大的并行化,较小的I/O开销与良好的负载平衡。 In this paper, we addressed the problem of parallel mining for frequent closed patterns on distributed memory multi-processors. The two phases strategy was proposed to parallel check if a frequent pattern was closed. Based on FPclose algorithm and two methods for parallel constructing FP-tree, two parallel algorithms, DP-FP and DL-FP were presented for frequent closed patterns mining. Our performance study shows the two algorithms achieved parallelism maximization, disk I/O minimization and good workload balancing.
作者 缪裕青 尹东
出处 《微电子学与计算机》 CSCD 北大核心 2007年第10期161-163,共3页 Microelectronics & Computer
关键词 关联规则 频繁模式 频繁闭合模式 FP-TREE 并行算法 association rules frequent patterns frequent closed patterns FP-tree parallel algorithm
  • 相关文献

参考文献4

  • 1Grahne G,Zhu J.Efficiently using prefix-trees in mining frequent Itemseta[C].Proceedings of the HMI'03 Workshop on Frequent Itemsets Mining Implementations,2003:1-3
  • 2缪裕青.频繁闭合项目集的并行挖掘算法研究[J].计算机科学,2004,31(5):166-168. 被引量:5
  • 3Tang P,Ning L,Wu N.Domain and data paritioning for parallel mining of frequent closed itemsets[C].Proceedings of the 43th Annual Southeast Regional Conference,Kennesaww,GA,USA:ACM Press,2005:250-252
  • 4Javed A,Khokhar A.Frequent pattern mining on message passing multiprocessor Systems[J].Distributed and Parallel Databases,2004,16:321-322

二级参考文献8

  • 1[1]Agrawal R, et al. Mining association rules between sets of items in large databases. In: Proc. 1993 ACM SIGMOD Int'l Conf. Management of Data,Washington,D. C. ,May 1993
  • 2[2]Agrawal R,et al. Fast algorithms for mining association rules. In:Proc. 1994 VLDB Int'l Conf. ,Santiago,Chile,Sept. 1994
  • 3[3]Han Jiawei, et al. Mining frequent patterns without candidate generation. In:Proc. ACM SIGMOD Int'l Conf. On Management of Data,Dallas ,Texas ,May 2000
  • 4[4]Pasquier N, et al. Discovering frequent closed itemsets for association rules. In: Proc. Int'l Conf. On Database Theory,Jan. 1999
  • 5[5]Wang Jianyong, et al. CLOSET+: searching for the best strategies for mining frequent closed itemsets. In: Proc. Ninth ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining,Washington,DC,Aug. 2003
  • 6[6]Agrawal R, et al. Parallel mining of association rules. IEEE Trans. on Knowledge and Data Eng. ,Dec. 1996.8
  • 7[7]Han Eui-Hong, et al. Scalable parallel data mining for association rules. IEEE Trans. on Knowledge and Data Eng., May/June 2000,12
  • 8[8]Zalane O R, et al. Fast parallel association rule mining without candidacy generation. In:Proc. IEEE Int'l Conf. On Data Mining,San Jose ,CA USA, Nov. 2001

共引文献4

同被引文献19

  • 1吴磊,陈鹏.基于并行计算的关联规则挖掘优化算法[J].计算机应用,2005,25(9):1989-1991. 被引量:3
  • 2王运鹏,胡修林,阮幼林.一种最大频繁模式的快速挖掘算法[J].计算机应用研究,2006,23(10):86-88. 被引量:3
  • 3Srikant R, Agrawal R. Mining sequential patterns: generalizations and performance improvements[C].// Proceedings of the 5th International Conference on Extending Database Technology. Ausrila: Badvoslan,1996: 3-17.
  • 4Pei J, Han J. PrefixSpan:mining sequential patterns efficiently by prefix2p rojected pattern growth [C].// Proc of the 7 th International Conference on Data Engineering. Washington DC: IEEE Computer Society, 2001: 215-224.
  • 5Zakim J. Spade.. an efficient algorithm for mining frequent sequences [J]. Machine Learning, 2001, 41 (1): 31-60.
  • 6Chen Yenliang, Chiang Meiching , Ko Mingtat. Discovering time-interval sequential patterns in sequence databases [J]. Expert Systems with Applications, 2003(25) : 343-354.
  • 7Hu Yahan , Tony Cheng-kui Huang, Yang HuiRu, et al. On mining multi-time-interval sequential patterns [J]. Data: Knowledge Engineering, 2009 (68): 1112-1127.
  • 8Agrawal R, Srikant R. Mining sequential patterns[C] //Proceedings of the llth International Confence on Data Engineering. Taiwan Taipei, 1995:3-14.
  • 9王黎明,张卓.基于iceberg概念格并置集成的闭频繁项集挖掘算法[J].计算机研究与发展,2007,44(7):1184-1190. 被引量:25
  • 10吴聪聪,李忠哗,何丕廉.基于矩阵的最大频繁模式挖掘及其更新算法[J].微电子学与计算机,2007,24(12):29-31. 被引量:4

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部