期刊文献+

脑电图分析的方法论

The Research and Investigation of EEG Analysis
下载PDF
导出
摘要 临床诊断中的脑电图分析方法可归为两大类:线性分析法与非线性分析法。本文介绍了这两类方法中常用的算法如谱估计、小波分析、混沌分析方法等,分析了这两类方法的特点、优势以及存在的不足。同时讨论了在临床应用中选取这两类方法所出现的问题。提出了将人工势场法用于脑电图分析的新思路,并对研究方案进行了可行性分析。 The methods of EEG analysis can be classified into two categories:the liner methods and nonlinear methods. Some algorithms such as spectrum estimation,wavelet analysis,chaos analysis which used widely at present are introduced in this paper, and the advantage and disadvantage of each method are discussed. Some problems that the methods for clinical application could meet are also discussed. Then a new idea that uses the artificial potential field method for EEG analysis is mentioned, and the analysis of the feasibility for the research program is also given.
出处 《医学与哲学(B)》 2007年第9期49-50,共2页 Medicine & Philosophy(B)
基金 国家自然科学基金项目资助 项目编号:60075019
关键词 EEG分析 线性分析法 非线性分析法 人工势场法 EEG analysis, linear methods, nonlinear methods, artificial potential field
  • 相关文献

参考文献6

二级参考文献45

  • 1杨福生 高上凯.生物医学信号处理[M].高等教育出版社,1995.318-369.
  • 2边肇祺等编著.模式识别[M].清华大学出版社,1999..
  • 3[1]Smith J, Karacan I, Yang M. Automated analysis of the human sleep EEG [J]. Waking and Sleeping, 1978, 2: 75~83.
  • 4[2]Stanus E, Lacroix B, Kerkhofs M, et al. Automated sleep coring: a comparative reliability study of two algorithms [J]. Electroencephalography and Clinical Neurophysiology, 1987, 66: 448~454.
  • 5[3]Pricipe J, Gala S K, Chang T G. Sleep staging automaton based on the theory of evidence [J]. IEEE Transaction on Biomedical Engineering, 1987, 36(5): 503~509.
  • 6[4]Schaltenbrand N, Lengelle R, Macher J P. Neural network model: application to automatic analysis of human sleep [J]. Computer and Biomedical Research, 1993, 26: 157~171.
  • 7[5]Doman J, Detka C, Hoffman T, et al. Automating the sleep laboratory: implementation and validation of digital recording and analysis [J]. International Journal of Bio-medical Computing, 1995, 38: 277~290.
  • 8[6]Pradhan N, Sadasivan P K. The nature of dominant Lyapunov exponent and attractor dimension curve of EEG in sleep [J]. Comput Biol Med, 1996, 26: 419~428.
  • 9[7]Choi H, Williams W J. Improved time-frequency representation of multi-component signals using exponential kemels [J]. IEEE Transaction on Acoustics, Speech, and Signal Processing, 1989, 37(6): 861~871.
  • 10[8]Jones D L, Parks T W. A resolution comparison of several time-frequency representations [J]. IEEE Transactions on Signal Processing, 1992, 40(2): 413~420.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部