期刊文献+

基于样本熵的注意力相关脑电特征信息提取与分类 被引量:23

Feature Exaction and Classification of Attention Related Electroencephalographic Signals Based on Sample Entropy
下载PDF
导出
摘要 提出一种用样本熵作为特征进行注意力相关脑电信号的分析与分类处理、并采用支持向量机(SVM)算法实现分类器的方法.7位年龄在20-30岁之间的男性受试者接受了执行3种不同注意任务状态下的测试.数据分析结果显示:样本熵分类法对注意任务相关脑电信号分类的正确率可达85.5%,优于传统频段能量法获得的分类精度(77.9%).这个结果暗示了样本熵能有效地识别出自发脑电中注意力相关信息,因而它可在脑电生物信息反馈治疗系统设计中获得广泛的应用. A method regarding the sample entropy (SampEn) as features is proposed to carry out the analysis and classification of attention related electroencephalographic(EEG) signals, and the support vector machine (SVM) algorithm is used as classifiers for classification, seven males (aged from 20 to 30) are recruited to perform three attention-related tasks, including attention, inattention, and relaxation states. The processing results demonstrate that the classification accuracy of the SampEn gets up to 85.5% for classifying the relation between attention and inattention, obviously much higher than that with frequency band power (77.9%). It indicates that the SampEn is more effective to extract the information attention-related in EEG to show the clinical application prospects in EEG biofeedback systems.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2007年第10期1237-1241,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(30670660) 陕西省科技计划资助项目(2006k15-G5)
关键词 脑电 生物反馈 样本熵 支持向量机 electroencephalography biofeedback sample entropy support vector machine
  • 相关文献

参考文献12

  • 1Ebrahimi T,Vesin J M.Brain-computer interface in multimedia communication[J].IEEE Signal Processing Magazine,2003,20(1):14-24.
  • 2Phillips H.Controlling pain by watching your brain[J].New Scientist,2004,182(2445):9.
  • 3McFarland D J,McCane L M.EEG-based communication and control:short-term role of feedback[J].IEEE Transactions on Rehabilitation Engineering,1998,6(3):7-11.
  • 4Green C S,Bavelier D.Action video game modifies visual selective attention[J].Nature,2003,423(6939):534-537.
  • 5王珏,魏娜,张彤,兰海,姚凯南.注意力缺陷障碍伴多动症诊断技术的现状与展望[J].中国康复医学杂志,2004,19(5):392-394. 被引量:6
  • 6Richman J S,Moorman J R.Physiologica time-series analysis using approximate entropy and sample entropy[J].Am J Physio:Heart Circ Physio,2000,278(6):2039-2049.
  • 7Abasolol D,Hornerol R,Espino P,et al.Entropy analysis of the EEG background activity in Alzheimer's disease patients[J].Physiological Measurement,2006,27(3):241-253.
  • 8刘慧,和卫星,陈晓平.生物时间序列的近似熵和样本熵方法比较[J].仪器仪表学报,2004,25(z1):806-807. 被引量:29
  • 9Vapnik V N.Statistical learning theory[M].New York:John Wiley and Sons Inc.,1998.
  • 10Pincus S M,Goldberger A L.Physiological time-series analysis:what does regularity quantify?[J].Am J Physiol:Heart Circ Physiol,1994,266(4):643-656.

二级参考文献23

  • 1徐通,辛明.ADHD的影像学及脑电生理学研究进展[J].国外医学(儿科学分册),1996,23(3):113-115. 被引量:8
  • 2[1]Pincus S M. Approximate entropy as a mesure of system complexity. Proc. Natl. Acad. Sci. USA. 1991,88: 2297- 2301.
  • 3[2]Richman Joshua S,J. Randall Moorman. Physiological time series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Physio., 2000,278:H2039~2049.
  • 4刘建平,BME联合学术年会,1995年
  • 5萧静宁,脑科学概要,1986年,194页
  • 6Barkley RA. AttentionDeficit Hyperactivity Disorder[M]. New York:Guilford Press, 1991.278-326.
  • 7Greenberg LM. An objective measure of Methyphenidate response:Clinical use of the MCA [J].Psychopharmacology Bulletin,1987,23:279-282.
  • 8Lubar JF, Swarbwood MO, Swartwood JN, et al.Evaluation of the effectiveness EEG neurofeedback training for ADHD in a clinical setting as measured by changes in T.O.V.A. scores, behavioral ratings, and WISC-R performance [J].Biofeedback and Self-Regulation
  • 9Glen A,Sunohara MAM,et al. Effect of Methylphenidate on Attention in Children with Attention Deficit Hyperactivity Disorder(ADHD):ERP Evidence [J].Neuropsychopharmacology,1999,21:218-228.
  • 10Mann CA, et al. Quantitative analysis of EEG in boys with attention deficit hyperactivity disorder:Controlled study with clinical implications[J].Pediatric Neurology,1992,8(1):30-36.

共引文献48

同被引文献181

引证文献23

二级引证文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部