期刊文献+

一种对IMM真实误差二阶距的估计方法

An Approach to Estimate the True Error Second-order Moment of IMM
下载PDF
导出
摘要 交互式多模型IMM被认为是时混合系统估计的一种性价比最好的算法之一。考虑到各个模型之间的相关性,在假设已知真实模式序列的情况下,本文提出了一种对IMM真实误差均值、协方差以及二阶距的估计方法。在Monte-Carlo仿真实验下用真实误差二阶距的均值平方根来评估IMM的性能,并与RMSE进行了比较。另外对该方法在跟踪门设计中的应用前景进行了展望。 The interacting multiple model method IMM has been shown to be one of the most cost-effective algorithm for the estimation of hybrid system. Here the dependence relation between models is taken into account, and an approach which estimates the true errors' mean, covariance, and second-order moment is proposed under the assumption that the true mode sequence is known. The root mean of the true error second-order moment is used to estimate the performance of IMM and compared with RMSE via Monte-Carlo simulations. The future application of this approach to tracking gate design is also prospected.
出处 《计算机科学》 CSCD 北大核心 2007年第9期186-188,共3页 Computer Science
关键词 混合系统 交互式多模型 卡尔曼滤波器 误差二阶距 Hybrid system,IMM,Kalman filter,Error second-order moment.
  • 相关文献

参考文献8

  • 1Blom H A P,Bar-Shalom Y.The interacting multiple model algorithm for systems with Markovian switching coefficients[J].IEEE trans on Automatic Control (S0018-9286),1988,33 (8):780-783.
  • 2Li X R,Jilkov V P.Survey of Maneuvering Target Tracking.Part V:Multiple-Model Methods[J].IEEE trans on Aerospace and Electronic Systems (s0018-9251),2005,43(4):1255-1321.
  • 3Li X R,Bar-Shalom Y.Performance Prediction of the Interacting Multiple Model Algorithm[J].IEEE trans on Aerospace and Electronic Systems(s0018-9251),1993,39(3):775-771.
  • 4Li X R.Measures of performance for evaluation of estimators and filters[C].In:Proceedings of SPIE Conference on Signal and Data Processing of Small Targets.San Diego,CA,USA,July-August 2001.
  • 5Wang X Z,Challa S,Evans R.Gating Techniques for Maneuvering Target Tracking in Clutter[J].IEEE trans on Aerospace and electronic systems (s0018-9251),2002,38(3):1087-1097.
  • 6Li X R.A Survey of maneuvering target tracking.Part Ⅰ Dynamic models[J].IEEE trans on Aerospace and Electronic Systems (s0018-9251),2003,39(4):1333-1364.
  • 7Kirubarajan T,Bar-Shalom Y.Kalman Filter Versus IMM Estimator:When Do We Need the Latter?[J].IEEE trans on Aerospace and electronic systems (s0018-9251),2003,39 (4):1452-1457.
  • 8Li X R,Jilkov V P.Expected-Mode Augmentation for MultipleModel Estimation[C].In:Proceeding of the 2001 International Conference on Information Fusion,Montreal,Canada,Aug.2001Web1.3-Web1.10.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部