期刊文献+

一种改进的蚁群算法在TSP问题中的应用研究 被引量:10

An Improved ant Colony Optimization Algorithm and Its Application in Solving TSP
下载PDF
导出
摘要 蚁群算法是近几年发展起来的一种新型的拟生态启发式算法,它已经被成功地应用在旅行商(TSP)问题上。由于基本蚁群算法存在过早陷入局部最优解和收敛性较差等缺点,文中对基本蚁群算法在基于蚁群系统的基础上进行了改进,在信息素的更新和解的搜索过程中更多地关注了局部最优解的信息,以使算法尽可能地跳出局部最优,并且改进后的算法对一些关键参数更容易控制。多次实验表明改进的蚁群算法在解决TSP问题上与基本蚁群算法相比有较好的寻优能力和收敛能力。这种算法可以应用在其它组合优化问题上,有一定的工程应用价值。 The Ant Colony Optimization (ACO) algorithm is a new meta- heuristic algorithm and has been successfully used to solve Traveling Salesman Problem (TSP). Because the classical ACO easily traps in the local best solution and has worse performance in convergence, the paper improves the classical ACO based on the Ant Colony System. The information of local best solution is focused on updating the pheromone and searching best solution, and the key parameters are controlled easily in improved algorithm. The results have shown that the performance of this algorithm can be improved in finding optimal solution and quick convergence of TSP. It would be interesting to apply this algorithm to other combinatorial optimization problems.
作者 刘少伟 王洁
出处 《计算机仿真》 CSCD 2007年第9期155-157,186,共4页 Computer Simulation
关键词 蚁群算法 蚁群系统 信息素 旅行商问题 ACO ( Ant colony optimization algorithm ) ACS ( Ant colony system ) Pheromone Traveling salesman problem
  • 相关文献

参考文献6

  • 1M Dorigo.Optimization,learning and nature algorithms[J].PhD Thesis,Department of Electronics,Politecnico di Milanno,Italy,1992.
  • 2M Dorigo,L M Gambardella.Ant Colony System:A Cooperative Learning Approach to the Traveling Salesman Problem[J].IEEETrans.Evol.Comp.1,1997.53-66.
  • 3M Dorigo.ACO algorithms for the Traveling Salesman Problem[M].In:Miettinnen K et al,eds.Evolutionary algorithms in engineering and computer science.John Wiley & Sons,1999.
  • 4W J Gutjahr.A graph -based ant system and its convergence[J].Future Generation Computing Systems,2000,16:873-888.
  • 5S Kirkpatrick,Jr C D Gelatt,M P Vecchi.Optimization by simulated annealing[J].Science,1983,220:671 -680.
  • 6胡小兵,黄席樾.基于混合行为蚁群算法的研究[J].控制与决策,2005,20(1):69-72. 被引量:29

二级参考文献7

  • 1王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 2Dorigo M, Maniezzo V, Colorni A. The ant system:Optimization by a colony of cooperating agents[J].1EEE Trans on Systems, Man, and Cybernetics -- Part B, 1996,26 (1) : 29-41.
  • 3Bullnheimer B, Hartl R F, Strauss C. A new rankbased version of the ant system: A computational study[J]. Central European J for Operations Research and Economics, 1999,7 (1) : 25-38.
  • 4Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to the traveling salesman problem[J].IEEE Trans on Evolutionary Computations, 1997,1(1):53-66
  • 5Stützle T, Hoos H H. Max-min ant system[J]. Future Generation Computer Systems, 2000,16 (8) : 889-914.
  • 6吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法[J].计算机研究与发展,1999,36(10):1240-1245. 被引量:306
  • 7覃刚力,杨家本.自适应调整信息素的蚁群算法[J].信息与控制,2002,31(3):198-201. 被引量:107

共引文献28

同被引文献86

引证文献10

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部