摘要
针对干涉数据质量不同的区域采取不同的展开策略,在最小二乘意义下利用有限元方法最小化不同的代价函数来实现。引入局部频率估计解决了相位展开的"坡度欠估计"问题,使用有限元方法利用了其可以适应任意不规则区域求解的特性。仿真和实测数据处理结果验证了本文方法的有效性,且与其它方法相比具有较高的精度。
Different strategies for regions were taken with different data quality, minimizing different cost functions in a least square sense via the finite element method (FEM). The underestimation of phase slope was overcome via local frequency estimation. The FEM could easily handle any irregular shape problem domain, Experimental results, carried out on simulated and real data, validate the efficiency of the proposed approach, and show the advantage of the proposed approach over other approaches in accuracy.
出处
《系统仿真学报》
EI
CAS
CSCD
北大核心
2007年第19期4574-4578,共5页
Journal of System Simulation
关键词
有限元方法
局部频率估计
相位展开
干涉
finite element method
local frequency estimation
phase unwrapping
interferometry