期刊文献+

基于听觉感知的电子耳蜗共振峰提取方案 被引量:1

Formant extraction algorithm based on auditory perception wavelet transform
下载PDF
导出
摘要 使用听觉感知的小波变换来提取电子耳蜗中的共振峰参数。首先用听觉感知的小波变换对原始语音信号进行分解重构,然后分别用自相关和格型法对合成语音信号和原始语音信号进行共振峰提取。实验结果表明:使用听觉感知的小波变换进行共振峰参数提取的可行性,合成语音信号能更好地表征原始语音信号的特征;同时也证实了电子耳蜗语音处理器中使用由格型法提取共振峰参数比自相关法更精确。 Extract cochlear formant on the basis first,then extract the formant of synthetic speech of auditory perception.Filter the speech and original speech with self-correlation with a set of auditory perception filter algorithm and grid model algorithm.The experiment results show that extracting cochlear formant on the basis of auditory perception is viable,the character of synthetic speech signal achieved in this paper could token original speech's character and the grid model algorithm is stabilizing and exactitude than self-correlation algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第29期232-234,共3页 Computer Engineering and Applications
基金 国家自然科学基金( the National Natural Science Foundation of China under Grant No.60572076) 江苏省高校自然科学研究计划项目资助( 05JKB510113)
关键词 共振峰提取 听觉感知 电子耳蜗 格型法 auditory perception wavelet transform formant extraction cochlear grid model algorithm
  • 相关文献

参考文献10

二级参考文献35

  • 1Yang X W et al. Auditory representation of acoustic signals. IEEE Trans on IT, 1992; 38(2): 824-839.
  • 2Kouwe A J, Wang D L, Brown G J. A comparison of auditory and blind separation techniques for speech segregation. IEEE Trans Speech and Audio Processing, 2001;9(3): 189-195.
  • 3Zhao H M, Zhou X D. A new acoustic perceptual model. Journal of Electronics, 1995; 12(1): 73-78.
  • 4Wang D L, Brown G J. Separation of speech from interfering sounds based on oscillatory correlation. IEEE Trans Neural Net , 1999; 10(3): 684-697.
  • 5Stubbs R J, Summerfield O. Algorithms for separating the speech of interfering talkers. J Acoust Soc Am , 1990;87(1): 359-372.
  • 6John M, Mathis H, Moschytz G S. Comblined blind/noblind source separation based on the natural gradient. IEEE Signal Processing Letters, 2001; 8(8): 236-238.
  • 7Brown G J, Cooke M. Computational auditory scene analysis, computer speech language, 1994; 8(4): 297-336.
  • 8杨福生,小波变换的工程分析与应用,1999年
  • 9Wang K,IEEE Eng Med Bio,1995年,14卷,2期,186页
  • 10科恩 L,时频分析:理论与应用,1998年

共引文献78

同被引文献7

  • 1Manolakis D G.Statistical and adaptive signal processing[M].New York: McGraw-Hill, 2003.
  • 2Chen S H,Wang J F.Speech enhancement using perceptual wave- let packet decomposition and teager energy operator[J].Jottrnal of VLSI Signal Processing,2004,36(2) : 125-139.
  • 3Lei S F,Tung Y K.Speech enhancement for nonstationary noises by wavelet packet transform and adaptive noise estimation[C]// International Sym on Intelligent Signal Processing and Comm Systems, Hongkong, 2005 : 41-44.
  • 4Hu Y,Loizou P C.Speech enhancement based on wavelet thresh- olding the multitaper spectrum[J].IEEE Trans on Speech and Audio Processing, 2004, 12 ( 1 ) : 59-67.
  • 5徐耀华,王刚,郭英.基于时频阈值的小波包语音增强算法[J].电子与信息学报,2008,30(6):1363-1366. 被引量:16
  • 6曹斌芳,何怡刚,郭杰荣.强噪声背景下的语音信号提取研究[J].噪声与振动控制,2008,28(4):145-148. 被引量:9
  • 7李野,吴亚锋,刘雪飞.基于感知小波变换的语音增强方法研究[J].计算机应用研究,2009,26(4):1313-1315. 被引量:9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部