期刊文献+

一种高效频繁子图挖掘算法 被引量:35

An Efficient Frequent Subgraph Mining Algorithm
下载PDF
导出
摘要 由于在频繁项集和频繁序列上取得的成功,数据挖掘技术正在着手解决结构化模式挖掘问题——频繁子图挖掘.诸如化学、生物学、计算机网络和WWW等应用技术都需要挖掘此类模式.提出了一种频繁子图挖掘的新算法.该算法通过对频繁子树的扩展,避免了图挖掘过程中高代价的计算过程.目前最好的频繁子图挖掘算法的时间复杂性是O(n3·2n),其中,n是图集中的频繁边数.提出算法的时间复杂性是O[2n·n2.5/logn],性能提高了O((1/2)n·logn)倍.实验结果也证实了这一理论分析. With the successful development of frequent item set and frequent sequence mining, the technology of data mining is natural to extend its way to solve the problem of structural pattern mining--Frequent subgraph mining. Frequent patterns are meaningful in many applications such as chemistry, biology, computer networks, and World-Wide Web. This paper proposes a new algorithm GraphGen for mining frequent subgraphs. GraphGen reduces the mining complexity through the extension of frequent subtree. For the best algorithm available, the complexity is O(n^3·2n), n is the number of frequent edges in a graph dataset. The complexity of GraphGen is O(2^n n^25/logn),which is improved O(/n- logn) times than the best one. Experimental results prove this theoretical analysis.
出处 《软件学报》 EI CSCD 北大核心 2007年第10期2469-2480,共12页 Journal of Software
基金 Supported by the National Natural Science Foundation of China under Grant Nos.60473075 60773063 (国家自然科学基金) the Key Program National Natural Science Foundation of China under Grant No.60533110 (国家自然科学基金重点项目) the National Basic Research Program of China under Grant No.2006CB303000 (国家重点基础研究发展计划(973)) the Program for New Century Excellent Talents in University (NCET) under Grant No.NCET-05-0333 (新世纪优秀人才支持计划)
关键词 频繁模式挖掘 子图同构 子树同构 频繁子树 生成树 frequent pattern mining subgraph isomorphism subtree isomorphism frequent subgraph spanningtree
  • 相关文献

参考文献17

  • 1Borgelt C, Berhold MR. Mining molecular fragments: Finding relevant substructures of molecules. In: Proc. of the ICDM 2002. 2002. http://www.wi-lab.condicdm02/
  • 2Holder LB, Cook D J, Djoko S. Substructures discovery in the subdue system. In: Proc. of the AAAI'94 Workshop Knowledge Discovery in Databases. 1994. 169-180.
  • 3Inokuchi A, Washio T, Okada T, Motoda H. Applying algebraic mining method of graph substructures to mutageniesis data analysis. In: Proc. of the PAKDD. 2000. http://www.informatik.nni-trier.de/-ley/db/conf/pakdd/pakdd2000.html
  • 4Inokuchi A, Washio T, Okada T. An apriori-based algorithm for mining frequent substructures from graph data. In: Proc. of the PKDD 2000. LNAI 1910, 2000. 13-23. http://eric.univ-lyon2.fr/-pkdd2000/
  • 5Kuramochi M, Karypis G. Frequent subgraph discovery. In: Proc. of the ICDM 2001. 2001. http://www.cs.york.ac.uk/arch/neural/ Conferences/ICDM2001 .html
  • 6Yan Y, Han J. gSpan: Graph-Based substructure pattern mining. In: Proc. of the 2002 Int'l Conf. on Data Mining (ICDM 2002). Maebashi, 2002. http://www.wi-lab.com/icdm02/
  • 7Washio T, Motoda H. State of the art of graph-based data mining. In: Proc. of the SIGKDD 2003. http://www.sigkdd.org/kdd2003/
  • 8Yan X, Han J. CloseGraph: Mining closed frequent graph patterns. In: Proc. of the 9th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining (KDD2003). Washington, 2003. http,://www.sigkdd.org/kdd2003/
  • 9Han J, Wang W, Prins J. Efficient mining of frequent subgraphs in the presence of isomorphism. In: Proc. of the IEEE Int'l Conf. on Data Mining (ICDM 2003), 2003. http://www.cs.sjsu,edu/faculty/tylirdicdm2003_workshop.htm
  • 10Jin R, Wang C, Polshakov D, Parthasarathy S, Agrawal G. Discovering frequent topological structures from graph datasets. In: Proc. of the KDD 2005. Chicago, 2005. 606-611. http://www.sigkdd.org/kdd2005/

同被引文献361

引证文献35

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部