期刊文献+

基于三维特征参数的贝叶斯推理电路功耗模型 被引量:1

Three-Dimensional Coefficient Based Bayesian Inference Power Model
下载PDF
导出
摘要 在功耗与信号统计分析的基础上,采用贝叶斯推理技术建立周期精确的功耗宏模型.通过分析信号特征对电路功耗的影响,选择输入信号密度Pin、输入跳变密度Din和输出跳变密度Dout作为贝叶斯推理的三维特征参数,证明了上述特征参数对信号时间和空间相关性信息的覆盖.实验结果表明,该方法较目前的门级功耗分析速度提高400余倍,周期功耗平均误差可以控制在10%以内. Based on power and signal statistics analysis, this paper chooses Bayesian inference method to build cycle-accurate power macro-model. Through analyzing the influence of signal features on power, we choose input signal probability, input transition density and output transition density as 3D coefficients used in Bayesian inference, and prove those coefficients can denote the temporal and spatial correlation information of signals. The experimental results indicate that the use of the proposed model results in significant (400 + times) speed-ups in power estimation time, while average error in each cycle can be limited to 10 %.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2007年第10期1241-1246,1251,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家"八六三"高技术研究发展计划(2004AA1Z1010)
关键词 功耗模型 贝叶斯推理 三维特征参数 power model Bayesian inference three-dimensional coefficient
  • 相关文献

参考文献10

  • 1Najm F.A survey of power estimation techniques in VLSI circuits[J].IEEE Transactions on Very Large Scale Integration System,1994,2(4):446-455
  • 2Gupta S,Najm F.Power modeling for high-level power estimation[J].IEEE Transactions on Very Large Scale Integration System,2000,8(1):18-29
  • 3Landman P E,Rabaey J M.Architectural power analysis:the dual bit type method[J].IEEE Transactions on Very Large Scale Integration System,1995,3(2):173-187
  • 4Mehta H,Owens R M,Irwin M J.Energy characterization based on clustering[C]//Proceedings of the 33rd ACM/IEEE Design Automation Conference,Las Vegas,1996:702-707
  • 5Raghunathan A,Dey S,Jha N K.Register-transfer level estimation techniques for switching activity and power consumption[C]//Proceedings of the 1996 IEEE/ACM International Conference on Computer-Aided Design,San Jose,1996:158-165
  • 6Wu Q,Qiu Q-R,Ding C-S.Cycle-accurate macro-models for RT-level power analysis[J].IEEE Transactions on Very Large Scale Integration System,1998,6(4):520-528
  • 7Chaudhry R,Stasiak D,Posluszny S,et al.A cycle accurate power estimation tool[C]//Proceedings of the Asia and South Pacific Conference on Design Automation,Yokohama,2006:867-870
  • 8Bhanja S,Ranganathan N.Dependency preserving probabilistic modeling of switching activity using Bayesian networks[C]//Proceedings of the 38th Conference on Design Automation,Las Vegas,2001:209-214
  • 9Cao L.Circuit power estimation using pattern recognition techniques[C]//Proceedings of International Conference on Computer Aided Design,San Jose,2002:412-417
  • 10Chandramouli R,Srikantam K.Multimode power modeling and maximum-likelihood estimation[J].IEEE Transactions on Very Large Scale Integration System,2004,12(11):1244-1248

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部