期刊文献+

规则可生长与修剪的非线性系统T-S模糊模型辨识 被引量:12

T-S Fuzzy Model Identification with Growing and Pruning Rules for Nonlinear Systems
下载PDF
导出
摘要 通常离线提取T-S模糊模型的规则后,规则数无法在模型使用中进行调整,而这成为表达非线性系统复杂性的一个瓶颈.针对这一问题,本文引入一种神经网络的生长和修剪方法,从实时数据中提取T-S模型的规则,并定义其对应局部模型对输出的影响,以此作为在线调整规则数的依据,从而更准确地表达了非线性系统的复杂性和运行中的变化.再加上基于竞争性EKF(Extended Kalman filter)的模型参数在线学习,T-S模型的建模精度也得到了保证.整个算法完全实现了T-S模糊模型的在线辨识,使模型的结构和参数具有很好的自适应能力.对CSTR(Continuously stirred tank reactor)系统的辨识,表明了该算法在处理非线性系统辨识问题上的优越性能. Offline rule extraction for the T-S fuzzy systems usually gives a fixed number of fuzzy rules, which make it a bottleneck for revealing the complexity of nonlinear systems. Thus, due to a growing and pruning strategy of the neural network, in this paper the fuzzy rules are extracted from real-time data and their number is adjusted online by the impact degree of one local model, such that the rules vary with the system dynaxaically and more precisely reflect the character of nonlinear systems. Furthermore, the accuracy of the T-S model is guaranteed by the parameter learning based on a competitive extended Kalman filter (EKF). The entire algorithm presents a completely online identification of the T-S model and gains a structural and parameter adaptability. An example for CSTR identification illustrates its good performance.
出处 《自动化学报》 EI CSCD 北大核心 2007年第10期1097-1100,共4页 Acta Automatica Sinica
基金 国家自然科学基金(60474051) 高等学校博士点专项科研基金(20060248001) 国家教育部新世纪优秀人才计划资助~~
关键词 T—S模型 模糊规则 生长与修剪 平均响应 在线辨识 T-S model, fuzzy rule, growing and pruning, average response, online identification
  • 相关文献

参考文献12

  • 1Takagi T,Sugeno M.Fuzzy identification of systems and its applications to modeling and control.IEEE Transactions on Systems,Man,and Cybernetic,1985,15(1):116-132
  • 2Ying H.Sufficient conditions on uniform approximation of multivariate functions by general Takagi-Sugeno fuzzy systems with linear rule consequent.IEEE Transactions on Systems,Man,and Cybernetic,1998,28(4):515-520
  • 3Setnes M.Supervised fuzzy clustering for rule extraction.IEEE Transactions on Fuzzy Systems,2000,8(4):416-424
  • 4Nie J H.Constructing fuzzy model by self-organizing counterpropagation network.IEEE Transactions on Systems,Man,and Cybernetic,1995,25(6):963-970
  • 5Chiu S L.Cluster estimation method with extension to fuzzy model identification.In:Proceedings of IEEE International Conference on Fuzzy Systems.IEEE,1994.1240-1245
  • 6Jang J S R.ANFIS:adaptive-network-based fuzzy inference system.IEEE Transactions on Systems,Man,and Cybernetics,1993,23(3):665-685
  • 7Lin F J,Lin C H,Shen P H.Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive.IEEE Transactions on Fuzzy Systems,2001,9(5):751-759
  • 8Shimojima K,Fukuda T,Hasegawa Y.Self-tuning fuzzy modeling with adaptive membership function,rules,and hierarchical structure based on genetic algorithm.Fuzzy Sets and Systems,1995,71(3):295-309
  • 9Huang G B,Saratchandran P,Sundararajan N.A generalized growing and pruning RBF neural network for function approximation.IEEE Transactions on Neural Networks,2005,16(1):57-67
  • 10Karayiannis N,Mi G W.Growing radial basis neural networks:merging supervised and unsupervised learning withnetwork growth techniques.IEEE Transactions on Neural Networks,1997,8(6):1492-1506 Fuzzy Sets and Systems,2006,157(9):1260-1275

同被引文献162

引证文献12

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部