期刊文献+

热塑性聚酰亚胺多孔材料制备工艺的探讨 被引量:5

Study of Preparation Technology for Thermoplastic Polyimide Porous Material
下载PDF
导出
摘要 以热塑性聚酰亚胺多孔材料制备工艺为研究对象,考察主要工艺参数(冷压压力、烧结温度及保温时间)对多孔材料关键指标(含油率和油保持率)的影响;采用反向传播神经网络(BPNN)和径向基神经网络(RBFNN),建立其油保持率预测模型,分别考察了Levenberg-Marquardt算法和拟牛顿算法优化网络模型的运算量和精度。结果表明:随着压力、温度和时间的提高,材料孔隙率降低,从而含油率呈现下降趋势;而油保持率由材料孔径和孔隙率共同决定,正交实验表明其与工艺参数关系较复杂;同时RBFNN模型因采用径向基函数,在小输入量范围内可产生高响应,为此,更适合热塑性聚酰亚胺多孔材料冷压烧结工艺特点。 The preparation technology of thermoplastic polyimide porous material was researched. The effects of cold press pressure, sintering temperature and sintering time on oil reservation and oil retain were investigated ; the model of pre- dictive oil retain was designed by Back-Propagation Neural Network (BPNNN) and Radial Basis Function Neural Network (RBFNNN) ;training epochs and training goal of neural network were optimized with quasi-Newton method and Levenberg- Marquardt method. It is showed that porosity and oil reservation are decreased with the increase of pressure, temperature and time. Oil retain is affected on both pore diameter and porosity, orthogonal designing indicates that the relation between oil retain and technology parameter is complex. Meanwhile, the model of RBFNNN has better general ability in narrow independent variable range by radial basis function, therefore, it is appropriate to cold press and sintering technology of thermoplastic polyimide porous material.
出处 《润滑与密封》 CAS CSCD 北大核心 2007年第1期79-82,104,共5页 Lubrication Engineering
基金 江苏省材料摩擦学重点实验室开放基金项目资助(kjsmcx04001)
关键词 热塑性聚酰亚胺 油保持率 多孔材料 神经网络 thermoplastic polyimide oil retain porous material neural network
  • 相关文献

参考文献11

二级参考文献36

共引文献89

同被引文献73

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部