期刊文献+

采用PQLF的不确定模糊系统最优保性能控制 被引量:1

Optimal Guaranteed Cost Control for Uncertain Fuzzy Systems Based on Piecewise Quadratic Lyapunov Function
下载PDF
导出
摘要 对一类模有界的参数不确定T-S模糊系统的保性能控制问题进行了分析研究。一个二次指标函数表征了闭环系统的性能。采用分段二次Lyapunov函数(Piecewise quadratic Lyapunov function,PQLF)方法,在使闭环系统渐近稳定的前提下以线性矩阵不等式(Linear matrix inequality,LMI)的形式给出了一种鲁棒最优保性能控制律。同时提出了一种新型分段并行补偿(Parallel distributed compensation,PDC)控制策略。该PDC控制器同样反映了模糊系统前提变量的规则结构信息。数值仿真显示,采用该设计方法所得到的闭环保性能值优于传统二次Lyapunov函数(Common quadratic Lyapunov function,CQLF)方法下的闭环保性能值,且系统动态性能良好,鲁棒性强。 Based on the piecewise quadratic Lyapunov function (PQLF) approach, the optimally guaranteed cost control of a class of continuous Takagi-Sugeno (T-S) fuzzy systems is studied with normbounded parametric uncertainties. A linear quadratic cost function is considered as a performance index of closed-loop fuzzy systems. Then, a robust optimally guaranteed cost control law is derived in the form of linear matrix inequality (LMI) by the PQLF approach for stabilization of closed-loop fuzzy systems. A piecewise parallel distributed compensation (PDC) scheme containing the structural information of the rule base is introduced. A numerical example illustrates the efficiencies of the PQLF approach and the PDC stabilization method. The controller designed by the PQLF approach is robust against normbounded parametric uncertainties and has better performance than those of the common quadratic Lyapunov function (CQLF) approach.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2007年第5期616-621,共6页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金(60774030)资助项目
关键词 T-S模糊系统 分段二次Lyapunov函数(PQLF) 最优保性能控制 鲁棒控制 线性矩阵不等式 T-S fuzzy system piecewise quadratic Lyapunov function (PQLF) optimal guaranteed cost control robust control linear matrix inequality (LMI)
  • 相关文献

参考文献16

  • 1Takagi T,Sugeno M.Fuzzy identification of systems and its applications to modeling and control[J].IEEE Trans on Systems,Man and Cybernetics,1985,15(2):116-132.
  • 2Tanaka K,Sugeno M.Stability analysis and design of fuzzy control system[J].Fuzzy Sets and Systems,1992,45 (2):135-156.
  • 3Wang H O,Tanaka K,GriffinM.An approach to fuzzy control of nonlinear systems:stability and design issues[J].IEEE Trans on Fuzzy Systems,1996,4(1):14-23.
  • 4Jonhansson M,Rantzer A,Arzen K E.Piecewise quadratic stability of fuzzy systems[J].IEEE Trans on Fuzzy Systems,1999,7(6):713-722.
  • 5Xiu Z H,Ren G.Stability analysis and systematic design of Takagi-Sugeno fuzzy control systems[J].Fuzzy Sets and Systems,2005,151(1):119-138.
  • 6Tanaka K,Ikeda T,Wang H O.Robust stabilization of a class of uncertain nonlinear systems via fuzzy control:quadratic stabilizability,H∞ control theory,and linear matrix inequalities[J].IEEE Trans on Fuzzy Systems,1996,4(1):1-13.
  • 7Lee K R,Jeung E T,Park H B.Robust fuzzy H∞control for uncertain nonlinear systems via state feedback:an LMI approach[J].Fuzzy Sets and Systems,2001,120(1):123-134.
  • 8Tanaka K,Hori T,Wang H O.A multiple Lyapuqnov function approach to stabilization of fuzzy control systems[J].IEEE Trans on Fuzzy Systems,2003,11(4):582-589.
  • 9Wang W J,Sun C H.Relaxed stability and stabilization conditions for a T-S fuzzy discrete system[J].Fuzzy Sets and Systems,2005,156(2):208-225.
  • 10Lee H J,Park J B,Chen G.Robust fuzzy control of nonlinear systems with parametric uncertainties[J].IEEE Trans on Fuzzy Systems,2001,9(2):369-379.

二级参考文献7

共引文献16

同被引文献19

  • 1张大庆,张庆灵,胡跃冰.T-S模糊系统稳定性的一个新的充分条件[J].自动化学报,2007,33(2):222-224. 被引量:3
  • 2TAKAGI T, SUGENO M. Fuzzy identification of systems and its application to modeling and control[J]. IEEE Transcations on Systems, Man, and Cybernetics, 1985, 15(1): 116- 132.
  • 3WANG H O, TANAKA K, GRIFFIN M. An analytical framework of fuzzy modeling and control of nonlinear systems: stability and design issues[C]//Proceedings of the 1995 American Control Conference. Evanston, IL: American Automatic Control Council, 1995, 3:2272 - 2276.
  • 4TANAKA K, SUGENO M. Stability analysis and design of fuzzy control systems[J]. Fuzzy Sets and Systems, 1992, 45(2): 135 - 156.
  • 5TANAKA K, IKEDA T, WANG H O. Fuzzy regulators and fuzzy observers: Relaxed stability condition and LMI-based design[J]. IEEE Transcations on Fuzzy Systems, 1998, 6(2): 250 - 256.
  • 6TANAKA K, IKEDA T, WANG H O. A unified approach to controlling chaos via LMI-based fuzzy control system design[J]. IEEE Transcations on Circuits and Systems-I: Fundamental Theory and Application, 1998, 45(10): 1021 - 1040.
  • 7TANAKA K, IKEDA T, WANG H O. An LMI approach to fuzzy controller designs based on the relaxed stability conditions[C]//Proceedings of the 6th IEEE International Conference on Fuzzy Systems. Barcelona Spain: IEEE, 1997, 1:171 - 176.
  • 8KIM E, LEE H. New approaches to relaxed quadratic stability condition of fuzzy control systems[J]. IEEE Transcations on Fuzzy Systems, 2000, 8(5): 523 - 534.
  • 9LIU X D, ZHANG Q L. New approaches to H∞ controller designs based on fuzzy observers for T-S fuzzy systems via LMI[J]. Automatica, 2003, 39(9): 1571 - 1582.
  • 10CAO S G, REES N W, FENG G. Quadratic stability anlysis and design of continuous-time fuzzy control systems[J]. System Science, 1996, 27(2): 193 - 203.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部