期刊文献+

钛合金微弧氧化陶瓷层的结构研究 被引量:18

Investigation on Structure of Microarc Oxidation Ceramic Layer on Titanium Alloy
下载PDF
导出
摘要 利用微弧氧化技术,采用甘油磷酸钙和乙酸钙混合电解液体系,在Ti6Al4V钛合金表面制备了陶瓷涂层,并对涂层的结构特征进行了综合研究。试验结果表明,微弧氧化层为富含Ca、P元素的粗糙多孔结构。陶瓷层可分内外两层,内层薄而致密,存在分布较为均匀的细小孔洞。外层厚而多孔,孔径尺寸和深度随氧化电压的升高而增大。陶瓷层中Ca、P元素分布不均匀,内表面Ca元素含量明显低于外表面,而P元素含量内、外表面相近,在陶瓷层的次表层二者的含量相对最高。微弧氧化后钛合金基体表面变的粗糙不平,并有少量Ca、P元素扩散进入到钛合金基体表层。 Microarc oxidation was used to prepare ceramic oxide layer on the surface of Ti6A14V alloy in CaC3Hs(OH)2PO4-Ca(CH3COO)2 aqueous solution. The microstructure of the coating was analyzed synthetically. The experimental results showed that a porous ceramic film containing calcium and phosphate on surface of Ti6A14V alloy was acquired. This ceramic film was divided into two films of the inner and outer layers. The thin and compact inner layer contained the equably distributed small holes. The outer layer was thick and porous. The size and depth of these holes increased with an increase of the voltage. Ca and P distibuted unevenly in ceramic film. The content of Ca in inner layer was higher than that in outer layer, but P concentration was almost even in inner and outer layers. And the content of Ca and P was highest in the secondary surface layer. The surface of Ti6A14V alloy after microarc oxidation became rough and a little Ca and P diffused into substrate
出处 《中国表面工程》 EI CAS CSCD 2007年第5期11-15,18,共6页 China Surface Engineering
基金 江苏省自然科学基金(BK2005019) 中国矿业大学基金项目(2005B032)
关键词 钛合金 微弧氧化 陶瓷涂层 显微结构 titanium alloy microarc oxidation ceramic coating micro-structure
  • 相关文献

参考文献15

  • 1Mandl S, Sader R, Krause D, et al. Investigation on plasma immersion ion implantation treated medical implants [J]. Biomol Eng, 2002, (19): 129-132.
  • 2Hamada K, Kon K, Hanawa T, et al. Hydrothermal modification of titanium surface in calcium solutions [J]. Biomaterials, 2002, 23: 2265-2272.
  • 3Milena F, Alberto C, Gianni R, et al. In vitro and in vivo behavior of Ca and P enriched anodized titanium [J]. Biomaterials. 1999, 20: 1587-1594.
  • 4Wen H B, Groot K. Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatment [J]. Biomaterials, 1997, 18:1471- 1476.
  • 5Sehreckenbach J P, Marx G, Schlotting F, et al. Characterization of anodic spark-converted titanium surface for biomedical applications [J]. Journal of Materials Science, 1999, 10 (8): 453-457.
  • 6Patel J L, Saka N. Mieroplasmie Coatings [J]. Am Ceram Soc Bull, 2001, 80 (4): 27-29.
  • 7Markov G A, Mironova M K, Potapova O G, et al. Structure of anodic films formed by the mieroare oxidation of aluminum [J]. Inorganic Materials, 1983, 19(7): 1000-1004
  • 8Atroshchenko E S, Chufistov O E, Kazantsev I A, et al. Formation of structure and properties of coatings deposited by microarc oxidizing on parts fabricated from aluminum alloys [J]. Metal Science and Heat Treatment, 2000, 42(9-10): 411-415.
  • 9蒋百灵,吴国建,张淑芬,雷廷权.镁合金微弧氧化陶瓷层生长过程及微观结构的研究[J].材料热处理学报,2002,23(1):5-7. 被引量:116
  • 10Xue W B, Wang C, Chen R Y, et al. Structure and Properties Characterization of Ceramic Coatings Produced on Ti-6AL-4V Alloy by Microarc Oxidation in Aluminate Solution [J]. Mater Lett, 2002, 52(6): 435-441.

二级参考文献19

  • 1[1]Mandl S, Sader R, Krause D, et al. Investigation on plasma immersion ion implantation treated medical implants [J]. Biomol Eng, 2002;(19): 129-132.
  • 2[2]Yerokhin AL, Voevodin AA, Lyubimov VV, et al. Plasma electrolytic fabrication of oxide ceramic surface layers for tribotechnical purposes on aluminium alloys [J]. Surf Coat Technol, 1998; (110): 140-146.
  • 3[3]Tian J, Luo ZZ, Qi SK, et al. Structure and antiwear behavior of micro-arc oxidized coatings on aluminum alloy [J]. Surf Coat Technol, 2002; (154): 1-7.
  • 4[4]Han Y, Hong SH, Xu KW. Synthesis of nanocrystalline titania films by micro-arc oxidation [J]. Mater Let, 2002; (56): 744-747.
  • 5[5]Hamada K, Kon M, Hanawa T, et al. Hydrothermal modification of titanium surface in calcium solutions [J]. Biomaterials, 2002; (23): 2265-2272.
  • 6[6]Milena F, Alberto C, Gianni R, et al. In vitro and in vivo behaviour of Ca- and P-enriched anodized titanium [J]. Biomaterials, 1999; (20): 1587-1594.
  • 7[7]Lange R, Lüthen F, Beck U, et al. Cell-extracellular matrix interaction and physico-chemical characteristics of titanium surfaces depend on the roughness of the material [J]. Biomol Eng, 2002; (19): 255-261.
  • 8[8]G(O..)ransson A, Jansson E, Tengvall P, et al. Bone formation after 4 weeks around blood-plasma-modified titanium implants with varying surface topographies: An in vivo study [J]. Biomaterials, 2003; (24): 197-205.
  • 9[9]Yang YZ, Tian JM, Deng L, et al. Morphological behavior of osteoblast-like cells on surface-modified titanium in vitro [J]. Biomaterials, 2002; (23): 1383-1389.
  • 10[10]Casaletto MP, Ingo GM, Kaciulis S. Surface studies of in vitro biocompatibility of titanium oxide coatings [J]. Appl Surf Sci, 2001; (172): 167-177.

共引文献137

同被引文献203

引证文献18

二级引证文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部