期刊文献+

基于免疫机制的动态多目标优化免疫算法 被引量:3

Dynamic Multiobjective Optimization Immune Algorithm Based on Immune Mechanisms
下载PDF
导出
摘要 作者针对一类决策空间的维数随时间变化的动态多目标优化问题,借鉴免疫应答蕴含的动态进化机制,提出了一种动态多目标优化免疫算法。算法设计中,依据抗体学习机理,设计几种具有自适应能力的免疫算子进化当前抗体群,以及借助免疫系统的识别功能设计环境识别规则,用于加速相似环境的寻优过程。另外,借助两个性能评价指标,经由比较性的数值试验,获得该算法具有较好的搜索效果以及较稳定的环境跟踪能力。 This work, based on the mechanisms of dynamic evolution of immune response, is to investigate a dynamic multiobjective optimization immune algorithm for a class of dynamic multi-objective optimization problems with the time-varying dimension of decision space. In designs of the algorithm, several adaptive immune operators relying on the metaphors of antibody learning are designed to evolve the current evolving population, while an environmental recognition rule, in terms of the function of recognition in the immune system, is developed to step up the process of optimization. In addition, depending upon the two performance indexes proposed, numerical experiments show that the proposed algorithm has satisfactory searching effects and the ability of stable environmenttracking.
出处 《贵州大学学报(自然科学版)》 2007年第5期486-490,共5页 Journal of Guizhou University:Natural Sciences
基金 国家自然科学基金(60565002)
关键词 动态多目标优化 环境跟踪 免疫应答 免疫算法 Dynamic multiobjective optimization, Environmenttracking, Immune response, Immune algorithm
  • 相关文献

参考文献11

  • 1K DEB. Multi-objective Optimization Using Evolutionary Algorithm[ M]. Chichester, UK: Wiley, 2001.
  • 2于建伟.多目标进化算法研究综述[J].海南大学学报(自然科学版),2005,23(4):378-382. 被引量:4
  • 3EZITZLER, MLAUMANNS, LTHIELE. SPEA2: Improving the Strength Pareto Evolutionary Algorithm [ Z ]. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH -8092 Zurich, Switzerland, May 2001.
  • 4KDEB, APRATAP, SAGARWAL, T MEYARIVAN. A Fast and Elitist Multi-objective Genetic Algorithm: NSGA -II[J]. IEEE Trans. Evolutionary Computation. 6(2002) 182-197.
  • 5MFARINA, KDEB, PAMATO. Dynamic Multi-objective Optimization Problems :Test Cases, Approximation, and Applications [ J ]. IEEE Transactions on Evolutionary Computaion. 2004.8 (5) : 425 - 442.
  • 6KDEB, URBHASKARA, SKARTHIK. Dynamic Multi-Objective Optimization and Decision-Making Using Modified NSGA-II: A Case Study on Hydro-Thermal Power Scheduling[ Z]. KanGAL Report No. 2006008. September, 2006.
  • 7PAMATO, MFARINA. An ALife-Inspired Evolutionary Algorithm for Dynamic Multi-objective Optimization Problems[ Z ]. Advances in seft computing 1,113 - 125 (2005).
  • 8IHATZAKIS, DWALLACE. Dynamic Multi-Objective Optimization with Evolutionary Algorithm : A Forward-Looking Aproach [ A ]. Droceedmtigs of the annual gonference on Genetic and evolutionory computation Seatte. Wasington, USA. 2006. pp : 1201 - 1208.
  • 9RHSHANG, LCJIAO, MGGONG. Clonal Selection Algorithm for Dynamic Multi-Objective Optimization [ A ]. In: Proceedings of the 2005 International Conference on Computational Intelligence and Security, [ C], [ s. 1. ] ,2005.
  • 10尚荣华等.免疫遗忘动态多目标优化[A].第16届中国神经网络大会,辽宁科技大学,鞍山,2006,pp.205-209.

二级参考文献12

  • 1COELLO C A C.List of reference on evolutionary multi-objective optimization[EB/OL].http://www.lania.mx/ccoello/EMOO/EMOO bib.html,2004 - 11 - 27.
  • 2PARETO V,COURS D.Economics(Volume Ⅰ and Ⅱ)[M].Lausanne:Rouge F,1896.
  • 3SCHAFFER J D.Multi-objective optimization with vector evaluated genetic algorithms[A].Proceedings of the 1st International Conference on Genetic Algorithms[C].Hillsdale:Lawrence Erlbaum Associates,1985.93- 100.
  • 4FONSECA C M,FLEMING P J.Genetic algorithms for multi-objective optimization:formulation,discussion and generalization[A].Proceedings of the 5st International Conference on Genetic Algorithms[C].CA:Morgan Kauffman,1993.416 - 423.
  • 5HAJELA P,LIN C Y.Genetic algorithms for multi-objective optional design[J].Structural Optimization,1992,4:99-107.
  • 6ZITZILER E,THIELE L.Multi-objective evolutionary algorithms:a comparative case study and the strength Pareto approach[J].IEEE Transaction on Evolutionary Computation,1999,3(4):257- 271.
  • 7LU Hai-ming,GARY G Y.Rank-density based multi-objective genetic algorithm[A].Proc.2000 Cong.Evol.Comput.Piscataway[C].NJ:IEEE Press,2002.944-949.
  • 8曾建湖 介婧 崔志华.微粒群算法[M].北京:科学出版社,2004.87-95.
  • 9DEB K.Construction of test problem for multi-objective optimization[A].GECCO-99,Proeeedings of the genetic and evolutionary computation Conference[C].San Fransisco:Morgan Kaufmann,1999,(1):164 - 171.
  • 10Van VELDHUIZEN D A.Mull-objective evolutionary computation:Classifications,Analysis,and New Innovation[D].Ohio:Air Force Institute of Technology,1999.

共引文献3

同被引文献66

  • 1窦全胜,周春光,徐中宇,潘冠宇.动态优化环境下的群核进化粒子群优化方法[J].计算机研究与发展,2006,43(1):89-95. 被引量:20
  • 2张著洪,钱淑渠.自适应免疫算法及其对动态函数优化的跟踪[J].模式识别与人工智能,2007,20(1):85-94. 被引量:14
  • 3胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 4刘淳安,王宇平.动态多目标优化的进化算法及其收敛性分析[J].电子学报,2007,35(6):1118-1121. 被引量:22
  • 5BRANKE J.Evolutionary algorithms for dynamic optimization problems:A survey:AIFB,University Karlsruhe,German,Auguest 24-27,1999[C].Berlin:IEEE Press,1999.
  • 6JIN Y C,BRANKE J.Evolutionary optimization in uncertain environments:A survey[J].IEEE Transactions on Evolutionary Computation,2005,9(3):134-137.
  • 7BRANKE J,KAUBER T,SCHMIDTH C,et al.A multi-population approach to dynamic optimization problems:Proc.of the Adaptive Computing in Design and Manufacturing,Berlin,Auguest 6-9,2000[C].Berlin:IEEE Press,2000.
  • 8PARSOPOULOS K E,VRAHATIS M N.Particle swarm optimization in noisy and continuously changing environments[J].Artificial Intelligence and Soft Computing,2001,2(4):87-95.
  • 9HU Xiao-hui,EBERHART R C.Adaptive particle swarm optimization:Detection and response to dynamic systems.IEEE Congress on Evolutionary Computation,Honolulu,November 15-17,2002[C].Hawaii:IEEE Press,2002.
  • 10WINEBERG M,OPPACHER F.Enhancing the GA's ability to cope with dynamic environments:Proc.of Genetic and Evolutionary Computation,San Francisco,December 8-11,2000[C].Morgan:Kaufmann Publisher,2000.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部