期刊文献+

基于危险理论的web文本挖掘研究 被引量:4

Research on the method of Web Mining Based on Danger Theory
下载PDF
导出
摘要 web挖掘是处理Internet环境下数据挖掘的一个重要方向,本文在比较研究传统web挖掘方法的基础上提出了一种基于危险理论的web挖掘新方法,该方法具有很强的自适应性和更新能力,为web挖掘领域提供了一种新的研究思路。 Web mining is an important aspect of data mining in the Internet environment, this paper presents a new web mining method based on the danger theory by comparing with the traditional methods, the method is high self-adaptive and has evolution ability, it can provide a new research approach to the field of Web mining o
出处 《微计算机信息》 北大核心 2007年第30期170-171,189,共3页 Control & Automation
基金 国家自然科学基金项目(60564001) 广西研究生教育创新计划项目(2006105930812M21)
关键词 危险理论 人工免疫 WEB挖掘 Danger Theory,rtificial Immune,eb Mining
  • 相关文献

参考文献5

二级参考文献17

  • 1彭曙蓉,章兢,杨文忠.MD5算法在消除重复网页算法中的应用[J].电脑知识与技术,2005(10):15-16. 被引量:5
  • 2[1]Langman RE, Cohn M. A short history of time and space in immune discrimination. Scand J Immunol, 1996, 44:544-548
  • 3[2]Langman KE, Cohn M. Self-nonself discrimination revisited.Introduction. Semin Immunol, 2000, 12:159-162
  • 4[3]Janeway CA Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbour Symposium Quant Biol, 1989, 54:1-13
  • 5[4]Janeway CA Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today,1992, 13:11-16
  • 6[5]Matzinger P. Tolerance, danger, and the extended family.Ann Rev Immunol, 1994, 12:991-1045
  • 7[6]Matzinger P. Essay 1: the danger model in its historical context. Scand J Immunol, 2001, 54:4-9
  • 8MATZINGER P. The danger model in its historical context[J]. Scandinavian Journal of Immunology, 2001 (4):4-9.
  • 9MATZINGER P. Tolerance, danger, and the extend family[J]. Ann Rev Immunol, 1994,12:991-1045.
  • 10MATZINGER P. The danger model: A renewed sense of self[J]. Science, 2002,296 : 301-305.

共引文献25

同被引文献21

  • 1王建会,王洪伟,申展,胡运发.一种实用高效的文本分类算法[J].计算机研究与发展,2005,42(1):85-93. 被引量:20
  • 2王煜,王正欧.基于模糊决策树的文本分类规则抽取[J].计算机应用,2005,25(7):1634-1637. 被引量:13
  • 3贾志娟,胡明生.基于网格的Multi_Agent web文本挖掘系统[J].微计算机信息,2006(07X):266-268. 被引量:5
  • 4亓洪标,李安,胡柏青.基于XML的web文本挖掘方法与模型研究[J].微计算机信息,2006,22(11X):196-197. 被引量:5
  • 5Maron M E. Automatic indexing: an experimental inquiry [J]. Journal of the ACM, 1961, 8(3): 404-417.
  • 6Li Y H, Jain A K. Classification of text documents[J]. The Computer Journal, 1998, 41(8) : 537-546.
  • 7Lisa F Rau, Paul S Jacobs. Creating segmented databases from free text for text retrieval [ C ]//proceedings of the 14th international conference on research and development in information retrieval. Chicago, Illinois: ACM Press, 1991:337 - 346.
  • 8Paul S Jambs. Joining statistics with NLP for text categorization[C]//proceedings of the third conference on applied natural language processing. Trento, Italy: ACM Press, 1992 : 178 - 185.
  • 9Yang Y. Expert network: effective and efficient learning from human decisions in text categorization and retrieval [C]//Proceedings of the 17th annual international ACM SIGIR conference on Research and development in information retrieval. Dublin, Ireland: ACM Press, New York, 1994:13- 22.
  • 10R SCHAPIRE,Y SINGER.BoosTexter:A Boosting-based System for Text Categorization[J].Machine Learning,2000,39(2/3):135-168.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部