期刊文献+

用四种离散变换主组分回归方法分辨重叠吸收光谱 被引量:1

Resolution of Overlapping Peaks of Absorption Spectra of Mixtures Using Four kinds of Discrete Transform Principal Component Regression Methods
下载PDF
导出
摘要 将离散小波变换、小波包变换、傅里叶变换和离散余弦变换与主组分回归方法结合构成4种离散变换主组分回归方法,编制了离散变换主组分回归方法的计算程序。将离散变换主组分回归方法用于处理对硝基甲苯、对硝基酚和对硝基苯胺混合物的重叠紫外吸收光谱数据。结果表明,离散变换主组分回归方法优于主组分回归方法,试样质量浓度的预测值与实际值的相对预测标准误差由3.81%降至约1.11%。 Four kinds of discrete transform principal component regression methods were constructed by combining wavelet packet transform (WPT), wavelet transform (WT), Fourier transform (FT) and discrete cosine transform (DCT) with principal component regression, and calculating programs were designed to perform calculations of discrete transform principal component regression methods. The methods were used to resolve overlapping spectra of the mixtures of p-nitrotoluene, p-nitrophenol and p-nitroaniline. The experimental results indicated that discrete transform principal component regression methods were better than principal component regression method and the predictive relative standard errors between the actual and estimated values of mass concentration of samples decreased from 3.81% to about 1.11%.
作者 高玲 任守信
出处 《分析科学学报》 CAS CSCD 2007年第5期579-582,共4页 Journal of Analytical Science
基金 国家自然科学基金(No.20667002) 内蒙古自然科学基金(No.200408020210)
关键词 离散变换 主组分回归 吸收光谱 重叠峰 Discrete transforms Principal component regression Overlapping peaks
  • 相关文献

参考文献8

  • 1Strang G.SIAM Rev.[J],1999,41(1):136.
  • 2Zhang Yong-qing,Mo Jin-yuan,Xie Tian-yao,et al.Anal.Chim.Acta[J],2001,437:151.
  • 3Shao Xue-guang,Wang Fang,Chen Da,Su Qing-de.Anal.Biochem.[J],2004,378:1382.
  • 4Mallat S.IEEE Trans.Inf.Theory[J],1991,37(4):1019.
  • 5Ren Shou-xin,Gao Ling.Talanta[J],2000,50(6):1163.
  • 6高玲,任守信.小波包变换潜变量回归分辨重叠的紫外光谱[J].分析科学学报,2004,20(6):607-609. 被引量:3
  • 7Gao Ling,Ren Shou-xin.Spectrochim.Acta Part A[J],2005,61:3013.
  • 8Donoho D L.IEEE Trans.Inf.Theory[J],1995,41(3):613.

二级参考文献6

  • 1Heil C E, Walnut D F.SIAM Review[J],1989,31(4):62.
  • 2Ren Shou-xin, Gao Ling.Talanta[J],2000,51:1163.
  • 3Coifman R R, Wickerhauser M V.IEEE Trans. of Information Theory[J],1992,38:713.
  • 4Jawerth B, Swedens W.SIAM Review[J],1994,36:377.
  • 5Donoho D L.IEEE Trans of Information Theory[J],1995,41(3):613.
  • 6Ren Shou-xin, Gao Ling.Journal of Automatic Chemistry[J],1995,17:115.

共引文献2

同被引文献9

  • 1高玲,任守信.小波包变换潜变量回归分辨重叠的紫外光谱[J].分析科学学报,2004,20(6):607-609. 被引量:3
  • 2Cai W S,Li Y K,Shao X G.Chemometr.Intell.Lab.Syst.[J],2008,90:137.
  • 3Ni Y N,Wang Y,Kokot S.Talanta[J],2009,78:432.
  • 4Gao L,Ren R X.Spectrochim.Acta Part A[J],2005,61:3013.
  • 5Westerhuis J A,De Jong S,Smilde A G.Chemometr.Intell.Lab.Syst.[J],2001,56:13.
  • 6Ren R X,Gao L.Talanta[J],2000,50:1163.
  • 7Coifman R R,Wickerhauser M V.IEEE Trans.Inform.Theory[J],1992,38:713.
  • 8Ren S X,Gao L.J.Electroanal.Chem.[J],2006,586:23.
  • 9ZHAODong-yin(赵东颖) ZHANGShi-hong(张世红) XUChun-ming(徐春明).哈尔滨师范大学自然科学学报,1994,10(1):60-60.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部