摘要
给出一类具有某种对称性小周期复合材料稳态热传导问题解的渐近表示方法.区别于传统多尺度计算方法,将计算过程中需要求解的关于单胞Q的H_(per)1(Q)周期边值问题改为齐次边值问题,这样数值方法求解时协调元空间容易构造;另一方面传统的多尺度渐近解不满足原始问题的边界条件,新构造的渐近形式不仅满足原始问题的物理边界条件,同时保持一定的收敛阶,更能被工程上所接受.
A new asymptotic expansion is given for a class of steady heat transfer problems of periodic composite materials. Compared to the classical form, the stronger Hpler(Q) periodic boundary condition of auxiliary equation is replaced with 0 boundary condition. The new asymptotic expansion is still convergent to the solution of the original problem. This method is convenient for numerical computation, because the conforming element space for H0I(Q) is easier to be constructed than for Hpler(Q) . On the other hand, the new asymptotic expansion solution satisfies boundary condition of the original problem, which cannot be preserved in classical method.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2007年第4期682-687,共6页
Acta Mathematica Scientia
基金
国家自然科学基金(10471133)
重点项目基金(90405016)
重大项目基金(10590353)资助
关键词
均匀化
多尺度
椭圆问题
复合材料
Homogenization
Multiscale method
Elliptic problem
Composite materials