期刊文献+

结合近似最优比特分配的改进SPIHT算法 被引量:3

Improved SPIHT Algorithm Combined with Nearly Optimal Bit Allocation
下载PDF
导出
摘要 SPIHT算法是一种实用、高效的小波零树图像编码算法。针对SPIHT算法存储空间需求大、运算复杂度较高等缺点,提出了一种改进的快速、低存储SPIHT算法,该算法将小波变换所形成的水平、垂直、对角和低频4个子带分成4个处理单元,对每个处理单元分别进行量化编码,并在各单元之间采取近似最优比特分配以提高量化性能。实验结果表明,改进算法在提高峰值信噪比等性能指标的同时,有效地减少了算法的存储需求及运算时间。 SPIHT(set partitioning in hierarchical tree) algorithm is a wavelet based zerotree image encoding algorithm known for its high efficiency. However, its high memory requirement and long execute time consumption are obstacles to implement real-time compression. This paper presents a new fast and low memory image zerotree encoding algorithm. This algorithm processes wavelet coefficients of horizontal, vertical, diagonal and low frequency subband respectively, and a nearly optimal bit allocation stage is applied in the above subband to get better compression performance. Experimental results show this algorithm outperforms the original SPIHT algorithm in PSNR and efficiently reduces both the memory requirement and the time consumption.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第15期46-48,共3页 Computer Engineering
关键词 图像编码 小波变换 零树量化 SPIHT 比特分配 image encoding wavelet transform zerotree quantization set partitioning in hierarchical tree (SPIHT) bit allocation
  • 相关文献

参考文献8

  • 1Shapiro J M.Embedded Image Coding Using Zero Trees of Wavelet Coefficients[J].IEEE Trans.on Signal Processing,1993,41(12):3445-3462.
  • 2Said A,Pearlman W A.A New Fast and Efficient Image Codec Based on Set Partitioning in Hierarchal Trees[J].IEEE Trans.on Circuits and Systems for Video Technology,1996,6(3):243-250.
  • 3Lin W K,Burgress N.Low Memory Color Image Zerotree Coding[C]//Proceedings of the 32nd Asilomar Conference on Signal,Systems and Computer.1998:231-235.
  • 4Wheeler W,Pearlman W A.SPIHT Image Compression Without Lists[C]//Proceedings of the IEEE ICASSP'00.2000:2047-2050.
  • 5孙勇,胡广书,张辉.一种新的低存储量的图像零树编码算法[J].清华大学学报(自然科学版),2001,41(9):59-62. 被引量:6
  • 6Daubechies I,Sweldens W.Factoring Wavelet Transform into Lifting Steps[J].J.Fourier Analysis and Applications,1998,4(3):245-267.
  • 7Prandoni P,Vetterli M.R/D Optimal Linear Predication[J].IEEE Trans.on Speech and Audio Processing,2000,8(6):646-655.
  • 8Shoham Y,Gersho A.Efficient Bit Allocation for an Arbitrary Set of Quantizers[J].IEEE Trans.on Acoust.Speech,Signal Processing,1988,36(9):1445-1453.

二级参考文献6

  • 1[1]Mallat S. A theory for multiresolution signal decomposition: the wavelet representation [J]. IEEE Trans On Patt Recog, and Mach Intell, 1989, 11(2):674-693.
  • 2[2]Lewis A S, Knowles G. Image compression using the 2-D wavelet transform [J]. IEEE Trans On Image Processing, 1992, 1(2): 244-250.
  • 3[3]Haskell B G. Image and video coding-emerging standards and beyond [J]. IEEE Trans On Circuits and Systems for Video Tech, 1998, 8(7): 814-837.
  • 4[4]Said A, Pearlman W A. A new fast and efficient image codec based of Set Partitioning in Hierarchical Trees [J]. IEEE Trans On CSVT, 1996, 6(3): 243-250.
  • 5[5]Shapiro J M. Embedded image coding using zerotrees of wavelet coefficients [J]. IEEE Trans On Signal Process, 1993, 41(4): 3445-3462.
  • 6[6]Antonini M. Image coding using wavelet transform [J]. IEEE Trans On Image Processing, 1992, 1 (2): 205-220.

共引文献5

同被引文献26

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部