期刊文献+

非高斯噪声下基于U-粒子滤波器和似然比的非线性系统故障诊断 被引量:7

UNSCENTED PARTICLE FILTER AND LOG LIKELIHOOD RATIO BASED FAULT DIAGNOSIS OF NONLINEAR SYSTEM IN NON-GAUSSIAN NOISES
下载PDF
导出
摘要 针对普通粒子滤波器在非线性系统随机系统故障诊断中的'退化'现象和估计精度的不足,进而影响诊断准确率的问题,提出应用U-粒子滤波器(Unscented particle filter,UPF)进行改进的方法。在建立正常/异常UPF滤波器模型的基础上,推导基于UPF的似然概率密度函数和似然比(Log likelihood ratio,LLR)计算方法,构造故障的检测律和诊断律,并给出完整的故障诊断算法,不仅能准确预报故障发生的时刻,而且可以诊断出故障的类型。最后在某直升机非线性舵回路上进行了试验验证,结果证明了该方法的有效性和优越性。 As for the problem of fault diagnosis of nonlinear system in non-Ganssian noises, a new method based on the unscented particle filter(UPF) is proposed, concerning of the shortcoming of degeneracy and estimation precision of generic particle filter, Firstly, normal/abnormal UPF models are established separately, and the calculation method of likelihood probability density function and log likelihood ratio are deducted. Then, the fault detection and diagnosis rule are given, which can forecast both the happening time and type of the fault. At last, some experiments of nonlinear actuator loop of helicopter are carried out, which can demonstrate the validity and superiority of the proposed method.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2007年第10期27-31,共5页 Journal of Mechanical Engineering
基金 国家自然科学基金(50375153) 维修工程预先研究(413270303)资助项目。
关键词 U-粒子滤波器 似然比 故障诊断 非线性 非高斯 Unscented particle filter Log likelihood ratio Fault diagnosis Nonlinear Non-Gaussian
  • 相关文献

参考文献12

  • 1WILLSKY A S. A survey of design methods for failure detection in dynamic systems[J], Automatica, 1976(12): 601-611.
  • 2WALKER B K, KUANG Y H, FDI by extended Kalman filter parameter estimation for an industrial actuator benchmark[J], Control Eng. Practice, 1995, 3(12): 1 769-1 774.
  • 3ARNAUD D, NElL J G, VIKRAM K. Particle filters for state estimation of jump markov linear systems[J]. IEEE Transactions on Signal Processing, 2001, 49(3): 613-624.
  • 4ARULAMPALAM S, Maskell S, Gordon N, A tutorial on particle filters for online non-linear/non-Gaussian Bayesian tracking[J], IEEE Transaction on Signal Processing, 2002, 50(2): 174-188.
  • 5ERIK B, PETER J A, NILS C, et al. Monte Carlo filters for non-linear state estimation[J]. Automatica, 2001, 37:177-183.
  • 6VISAKAN K, LIP. A sequential Monte Carlo filtering approach to fault detection and isolation in nonlinear systems[J]. Proceedings of the 2000 IEEE Conference on Decision and Control, 2000, 5:4341-4 346.
  • 7LI P, VISAKAN K. Fault detection and isolation in non-linear stochastic systems-A combined adaptive Monte Carlo filtering and likelihood ratio approach[J]. International Journal of Control, 2004, 77(12): 1 101- 1 114.
  • 8JULIER S J, UHLMANN J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3): 401-422.
  • 9RUDOLPH V M, ARNAUD D. The unscented particle filter[R]. Technical Report CUED/F-Infeng/Tr 380. Cambridge University Engineering Department, 2001.
  • 10OLIVER P, ALAN M. An unscented particle filter for GMTI tracking[J]. Proceedings of the 2004 IEEE Aerospace Conference, 2004, 3. 1 869-1 875.

二级参考文献4

  • 1[3]Wang Q G, Lee T H, Fung H W, et al. PID tuning for improved performance[J]. IEEE Trans Control Systems Tech,1999,7(4):457-465.
  • 2[5]Xu Y, Hollerbach J M, Ma D. A nonlinear PD controller for force and contact transient control[J]. IEEE Control System Magazine,1995,15(1):15-21.
  • 3[6]Homayoun Seraji. A new class of nonlinear PID controllers with robotic applications[J]. J Robotic Systems,1998,15(3):161-181.
  • 4[7]Brian Armstrong, Bruce A Wade. Nonlinear PID control with partial state knowledge: Damping without derivatives[J]. Int J Robotics Res,2000,19(8):715-731.

共引文献82

同被引文献71

引证文献7

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部