期刊文献+

基于遗传规划方法的汽轮机转子钢热脆化性能预测 被引量:1

GENETIC PROGRAMMING APPROACH TO PREDICTING THE TEMPER EMBRITTLEMENT OF ROTOR STEELS
下载PDF
导出
摘要 在汽轮机转子钢热脆性无损检测技术的开发中,将遗传规划法应用到30Cr2MoV钢韧脆性转变温度预测模型的建立中,以提高检测精度。把材料的脆性转变温度作为预测模型的因变量,将单环动电位再活化法测得的峰值电流密度、电解液温度、材料的化学成分参数(J参数)、材料中Cr质量分数、S质量分数、材料的维氏硬度和晶粒度作为自变量,将因变量和自变量的试验测定结果分为训练样本数据和检验样本数据。依据训练样本数据,经过遗传规划法求得最优预测模型,并用检验样本数据对所得的预测模型进行检验。结果表明:所得模型的预测误差为±20℃,精度较高。因此可以将遗传规划法应用到汽轮机转子钢预测模型的建立中。 The genetic programming approach is proposed to predict temper embrittlement of rotor steel (30Cr2MoV). Two independent data sets are obtained experimentally: training data and verifying data. Peak current density of reactivation, temperature of electrolyte, the general chemical composition parameter (J-factor), chemical composition of Cr and S, hardness and the grain size parameter of the material are used as independent variables, while fracture appearance transition temperature as dependent variable. On the basis of training data, the best model is obtained by genetic programming, and the accuracy of it is verified with the verifying data. The prediction error of the model is within the scatter of ±20℃. The results suggest that, the prediction model obtained by genetic programming is feasible and effective.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2007年第10期211-214,共4页 Journal of Mechanical Engineering
基金 国家电力公司科技资助项目(SP11-2001-02-29)
关键词 汽轮机转子 热脆性 电化学极化 遗传规划 Steam turbine rotor Temper embrittlement Electrochemical polarization Genetic programming
  • 相关文献

参考文献12

  • 1FUJITA, AKITSUGU, SHINOHARA, et al. Effect of chemical composition and manufacturing procedure on toughness of CrMoV HP rotor forgings[J]. Journal of the Iron and Steel Institute of Japan, 1998, 84(3): 236-241.
  • 2KAMEDA J, RAN JAN R. Nondestructive evaluation of steels using acoustic and magnetic Barkhausen signals-Ⅱ. Effect of Intergranular Impurity Segregation[J]. Acta Metall, 1987, 35(7): 1527-1531.
  • 3BRUEMMER S M. Evaluation of chemical and electrochemical etching techniques to determine phosphorus segregation in NiCrMoV rotor steels[J]. Corrosion, 1986, 42(3): 180-185.
  • 4KOMAZAKI S, SHOJI T, ABE I, et al. Proceedings of Ninth International Symposium on Nondestructive Characterization of Materials Shield[C]. Sydney: AIP, 2000.
  • 5MAO X, ZHAO W. Electrochemical polarization method to detect aging embrittlement of 321 stainless steel[J]. Corrosion, 1993, 49(4): 335-342.
  • 6KWON I H, BAEK S S, YU H S. The use of electrochemical and mechanical property correlations to monitor the degradation of Cr-Mo-V turbine casing steel[J]. International Journal of Pressure Vessels and Piping, 2003, 80(3): 157-165.
  • 7YOSHIKONI K, TOUR G, MAO T. Nondestructive evaluation of temper embrittlement in Cr-Mo-V rotor steels[J]. JSME International Journal, 1992, 35(2): 226-233.
  • 8BREZOCNIK M, KOVACIC M, FICKO M. Prediction of surface roughness with genetic programming[J]. Journal of Materials Processing Technology, 2004, 157(2): 28-36.
  • 9BANZHAF W, NORDIN P. Genetic programming: an introduction[M]. Morgan Kaufmann: San Mateo, 1998.
  • 10BREZOCNIK M, GUSEL L. Predicting stress distribution in cold-formed material with genetic programming[J]. International Journal of Advanced Manufacturing Technology, 2004, 23(7): 467-474.

同被引文献17

  • 1于同敏,庄俭,王敏杰,李又民.微注塑成型中熔体充模流动的影响因素研究[J].塑性工程学报,2007,14(6):185-189. 被引量:12
  • 2Chen J, Kanetoh Y, Yokoi H. A study on influence of resin temperature on filling balance of multi-cavity molds (part4) //Japan Society of Polymer Processing[C]. Sendai, Japan: Japan Society of Polymer Processing, 2005: 159-160.
  • 3Takarada K R, Coulter J P, Beaumont J P. The effect of primary runner length on fill-imbalance in a geometrically balanced eight cavity polymer injection mold//Society of Plastics Engineers, Annual Technical Conference[C]. Charlotte, North Carolina: Society of Plastics Engineers, 2006: 1098-1102.
  • 4Pintter V, Hanemann T, Ruprecht R, et al. Injection molding and related techniques for fabrication of microstructures [J]. Microsys.Tech., 1997, 3(3): 129-133.
  • 5Yokoi Hidetoshi. Visualization and measurement technologies inside injection mold [J] Journal of the Japan Society for Precision Engineering, 2007, 73(2): 188-192.
  • 6Yu L D, Leel J, Koelling K W. Flow and heat transfer simulation of injection molding with micro structures [J]. Polym. Eng. Sci., 2004, 44(10): 1866-1876.
  • 7Young W B. Simulation of the filling process in molding components with micro channels [J]. Microsys. Tech., 2005, 11(66): 410-415.
  • 8Julien G, Thierry Cpatrice M. Microinjection molding of thermoplastic polymers: a review [J]. Journal of Micromechanics and Microengineering, 2007, 17(1): 96-109.
  • 9Beaumont J, Young J. Mold filling imbalances in geometrically balanced runner systems [J]. Journal of Injection Molding Technology, 1997, 1(3): 133-136.
  • 10Buchma M, Theriault R, Osswald T A. Polymer flow length simulation during injection mold filling [J]. Polymer Engineering and Science, 1997, 37(3): 667-671.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部