期刊文献+

基于WA-SVM组合模型的流域月降雨量预测研究 被引量:6

Basin Rainfall Series Forecast Based on WA-SVM Combined Model
下载PDF
导出
摘要 基于小波分析-支持向量机(WA-SVM)组合预测模型方法,将原始降雨序列进行小波分析分解到不同层次,对每层分别采用支持向量机预测,最后合成原始序列的预测值。将该模型应用于实际流域月降雨量预测,并与单独支持向量机回归方法的结果进行了对比分析。 On basis of the combined model of wavelet analysis and support vector machine (WA-SVM), this paper decomposes the original rainfall series to different layers by means of wavelet analysis, then forecasts each layer by means of SVM, and finally obtains the forecasted results of the original time series with composition. This model to estimate the monthly rainfall sequence in the watershed has been applied for the basin rainfall forecast, and the data obtained by combined model are compared with the results obtained only using support vector machine(SVM).
出处 《长江科学院院报》 CSCD 北大核心 2007年第5期23-26,共4页 Journal of Changjiang River Scientific Research Institute
基金 国家自然科学基金(40675070) 科技部公益研究项目(2005DBI3J101)
关键词 降雨量 预测 小波分析 支持向量机 rainfall forecast wavelet analysis support vector machine
  • 相关文献

参考文献5

二级参考文献36

  • 1梅松,程伟平,刘国华.基于支持向量机的洪水预报模型初探[J].中国农村水利水电,2005(3):34-36. 被引量:19
  • 2卜英勇,张怀亮.大型风机预防-预知维修初探[J].中国有色金属学报,1995,5(3):131-133. 被引量:2
  • 3赵辉 李进生 郭秀林.地下水位动态的人工神经网络研究[A]..农业节水与地下水开发利用[C].,2000..
  • 4Müller K-R, Smola A J, Ra tseh G, et ai. Predicting time series with support vector machines [Z]. In: Prec. of ICANN' 97, Springer Lecture Notes in Computer Science, 1997, 999- 1005.
  • 5Steve Gunn. Support Vector Machines for Classification and Regression [R]. ISIS Technical Report, 1998, 5.
  • 6M O Stitson, J A E Weston, A Gammennan, V Vovk, V Vapnik. Theory of Support Vector Machines [R]. Technical Report CSD-TR-96-17. Computational Intelligence Group, Royal Holloway, University of London, 1996.
  • 7Drucker H, Burges C, Kaufman L, et al. Suppmtvector regression machines [ A ]. In: mozer M, Jonian M,Petsche T (eds). Neural Information Processing Systems [M]. MIT Press, 1997, 9.
  • 8Sch lkopf B, Smola A. A Tutorial on Support Vecdor Regression [ R ]. Neuro COL T2 Technical Report Series NC2-TR-1998-030, 1998, 10.
  • 9Vapnik V N. The Nature of Statistical Learning Theory. NY: Springer-Verlag. 1995.
  • 10Vapnik V, Golowich S, Smola A. Supportvector method for function approximation, regression estimation, and signal processing [A]. In : Mozer M, Jordan M, Petsche T (eds). Neural Information Processing Systems [ M ]. MIT Press, 1997, 9.

共引文献179

同被引文献67

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部