摘要
主要证明了:约化的左G-morphic的右WIN-环是π-正则环;约化的右G-morphic的左WIN-环是强π-正则环;π-正则的零因子可换环是G-morphic环;约化的强-π-正出环是G-morphic环.
In this paper, we prove that: If right WIN-ring R is both reduced and left G-morphic, then R is π - regular; If left WIN-ring R is both reduced and right G-morphic, then R is strong π -regular; If ring R is both reduced and π -regular, then R is G-morphic; If ring R is both reduced and strong π-regular, then R is G- morphic.
出处
《安徽师范大学学报(自然科学版)》
CAS
2007年第5期542-544,547,共4页
Journal of Anhui Normal University(Natural Science)
基金
安徽省教育厅自然科学基金(2006kj-050c)