期刊文献+

G-morphic环的正则性 被引量:5

On Regularity of G-morphic Rings
下载PDF
导出
摘要 主要证明了:约化的左G-morphic的右WIN-环是π-正则环;约化的右G-morphic的左WIN-环是强π-正则环;π-正则的零因子可换环是G-morphic环;约化的强-π-正出环是G-morphic环. In this paper, we prove that: If right WIN-ring R is both reduced and left G-morphic, then R is π - regular; If left WIN-ring R is both reduced and right G-morphic, then R is strong π -regular; If ring R is both reduced and π -regular, then R is G-morphic; If ring R is both reduced and strong π-regular, then R is G- morphic.
出处 《安徽师范大学学报(自然科学版)》 CAS 2007年第5期542-544,547,共4页 Journal of Anhui Normal University(Natural Science)
基金 安徽省教育厅自然科学基金(2006kj-050c)
关键词 (右)G-morphic环 Π-正则环 强π-正则环 左(右)GP-内射环 左(右)WIN-环 left(right) G-morphie ring π -regular ring strong π -regular ring left (right) GP-injeetive ring left(right) WIN-ring
  • 相关文献

参考文献8

  • 1凌灯荣,夏徐林,戴泽俭.G-morphic环的一些结果[J].安徽师范大学学报(自然科学版),2005,28(4):398-400. 被引量:14
  • 2Nicholson W K.Principally injective rings[J].Journal of Algebra,1995,174:77-93.
  • 3CHEN Jian long,DING Nan qing.On regularity of rings[J].Algebra colloquium,2001,8(3):267-274.
  • 4Nicholson W K,Sanchez C E.Rings with the dual of the isomorphism theorem[J].J Algebra 2004,(271):391-406.
  • 5CHEN Jian long,DING Nan qing,Yousif M F.On generalizations of injective rings[J].Common Algebra,2003,31(10):5105-5116.
  • 6CHEN Jian long,DING Nan qing.On general principally injective rings[J].Common Algebra,1999,27(5):2097-2116.
  • 7Nicholson W K,Yousif M F.Mininjective rings[J].J Algebra,1999,187:548-578.
  • 8Anderson F W,Fuller K R.Rings and Categories of Modules[M].New York:Springer-Verlag,1974.

二级参考文献7

  • 1Nicholson W K,Sanchez Campos E.Rings with the dual of the isomorphism theorem [J].J Algebra,2004,271:391-406.
  • 2Anderson F W,Fuller K R.Rings and categories of modules [M].New Work:Springer-Verlag,1974.
  • 3Yue Chi Ming R.On p-injective and generalization [J].Riv Mat Univ Parma,1996,5(5):183-188.
  • 4Yue Chi Ming R.On annihilator ideals IV [J].Riv Mat Univ Parma,1987,13:19-27.
  • 5Zhang Jule,Wu Jun.Generalizations of p-injective [J].Algebra Colloquium,1999,6(3):277-282.
  • 6肖光世,储茂权.AP-内射环的某些研究[J].安徽师范大学学报(自然科学版),2001,24(3):210-213. 被引量:3
  • 7章聚乐,陈建龙.P-内射环的几个新结果[J].安徽师大学报,1989,12(2):6-11. 被引量:3

共引文献13

同被引文献30

  • 1章聚乐,杜先能.Von Neumann正则环和SF-环[J].数学年刊(A辑),1993,1(1):6-10. 被引量:17
  • 2肖光世,佟文廷.零可换环的一些性质[J].数学年刊(A辑),2005,26(2):251-256. 被引量:3
  • 3凌灯荣,夏徐林,戴泽俭.G-morphic环的一些结果[J].安徽师范大学学报(自然科学版),2005,28(4):398-400. 被引量:14
  • 4颜晓光,储茂权,丁学智.G-morphic模[J].安徽师范大学学报(自然科学版),2006,29(5):426-428. 被引量:9
  • 5Xiao Guangshi, Tng Wenting. Rings whose every simple left R-module is GP-injective[J]. Southeast Asian Bulletin of Math, 2006,30:969 - 980.
  • 6W K Nicholson, E Shanches Campos. Rings with the dual of the isomorphism theorem[ J ]. J Algebra, 2004,271:319 -406.
  • 7W K Nicholson, M F Yousif. Prineipally injective rings[J]. J Algebra, 1995,174:77- 93.
  • 8G Shin. Prime indeals and sheaf representation of a pseudo symmetric ring[J]. Amer Math Soc, 1973,84:43- 60.
  • 9XUE Weiming. On P-P-rings[J]. Kobe J Math, 1990,7:77-80.
  • 10VICTOR P. CAMILLO, YU Huaping. Exchange rings, units and idempotents[ J ]. Commn In Algebra, 1994,22 (12) : 4737 - 4749.

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部