期刊文献+

非线性分析方法在沪市高频时间序列中的应用

Application nonlinear analysis to high-frequency time series of the Shanghai stock market
下载PDF
导出
摘要 为研究高频金融时间序列的可预测性,尝试运用相空间重构和偏差计算分析方法预测t+1时刻股指瞬态变化方向。相空间重构可以保持原高频时间序列的某些信息,这些信息是对系统行为的近似描述。通过这种近似行为的描述,发现当时间t足够大时,即t→∞,系统的特性会被更好地反映出来;运用动态系统偏差来描述系统特性,分析系统的瞬间情况,而这种偏差等价于Jacobian矩阵的迹,它是用来测量无穷小的相空间量V(t)沿着轨迹x(t)的变化率。以沪市综合指数5 min高频数据为实证研究对象,预测t+1时刻股指瞬态变化方向,再和实际股指运动方向做比较,效果比较好。 In order to obtain the predictability of high frequency time series, this paper develops state space reconstruction and divergence calculation techniques have been for t+1 temporal trend of stock index. State space reconstruction techniques preserve certain information on original time series which describes the asymptotic behavior of the system. By describing the asymptotic behavior, the properties of the system will be shown better when time t is large enough, that is,t→∞. Divergence calculation of dynamical system is used to describe the characterisation of system and analyse the temporal trend. The divergence is locally equivalent to the trace of the Jacobian and measures the rate of change of an infinitesimal state space volume V(t) following an orbit x(t). This paper forecasts the t+1 temporal trend of the Shanghai stock market composite index based on 5-minute high-frequency time series and gets a satisfied result compared with the actual trend.
出处 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第5期585-588,共4页 Journal of Chengdu University of Technology: Science & Technology Edition
关键词 非线性分析 相空间重构 偏差计算 无交易成本 预测 nonlinear analysis state space reconstruction divergence calculation without transactioncost forecasting
  • 相关文献

参考文献12

  • 1WERON A,WERON R.Fractal market hypothesis and two power-laws[J].Chaos,Solitons & Fractals,2000,11(1-3):289-296.
  • 2CAMPBELL J Y,MANKIW N G.Permanent and transitory components in macroeconomic fluctuation[J].American Economic Review,Paper and Proceedings,1987,77:111-117.
  • 3FAMA E F.The behavior of stock markets[J].Journal of Business,1965,138:34-106.
  • 4MANDELBROT B B,VAN NESS.Fractional Brownian motions,fractional noises and applications[J].SIAM Review,1968,10:422-437.
  • 5MILLER K S,ROSS B.An Introduction to the Fractional Calculus and Fractional Differential Equations[M].New York:Wiley,1993.
  • 6DACOROGNA M M,GAUVREAU C L,MULLER U A,et al.Changing time scale for short-term forecasting in financial markets[J].Journal of Forecasting,1996,15:203-227.
  • 7PRING M.Introduction to Technical Analysis[M].New York:McGraw-Hill,1997.
  • 8Reuters Ltd.An Introduction to Technical Analysis[M].Singapore:Wiley,1999.
  • 9STROZZI F,ZALDIVAR J M,ZBILUT J P.Application of nonlinear time series analysis techniques to high-frequency currency exchange data[J].Physica A,2002,312:520-538.
  • 10STROZZI F,ZALDVAR J M,KRONBERG A,et al.On-line runaway prevention in chemical reactors using chaos theory techniques[J].AIChE J,1999,45:2394-2408.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部