期刊文献+

Periodic Bifurcation and Soliton Deflexion for Kadomtsev-Petviashvili Equation 被引量:1

Periodic Bifurcation and Soliton Deflexion for Kadomtsev-Petviashvili Equation
原文传递
导出
摘要 The spatial-temporal bifurcation for Kadomtsev-Petviashvili (KP) equations is considered. Exact two-soliton solution and doubly periodic solution to the KP-I equation, and two classes of periodic soliton solutions in different directions to KP-Ⅱ are obtained using the bilinear form, homoclinic test technique and temporal and 1 spatial transformation method, respectively. The equilibrium solution uo =-1/6, a unique spatial-temporal bifurcation which is periodic bifurcation for KP-I and deflexion of soliton for KP-Ⅱ, is investigated. The spatial-temporal bifurcation for Kadomtsev-Petviashvili (KP) equations is considered. Exact two-soliton solution and doubly periodic solution to the KP-I equation, and two classes of periodic soliton solutions in different directions to KP-Ⅱ are obtained using the bilinear form, homoclinic test technique and temporal and 1 spatial transformation method, respectively. The equilibrium solution uo =-1/6, a unique spatial-temporal bifurcation which is periodic bifurcation for KP-I and deflexion of soliton for KP-Ⅱ, is investigated.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2007年第6期1429-1432,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 10361007 and 10661002, the Yunnan Natural Science Foundation (No 2004A0001M), and The IMS, CUHK.
关键词 BOUSSINESQ EQUATION RATIONAL SOLUTIONS EVEN CONSTRAINT HIERARCHY BOUSSINESQ EQUATION RATIONAL SOLUTIONS EVEN CONSTRAINT HIERARCHY
  • 相关文献

参考文献14

  • 1Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution and Inverse Scattering (Cambridge:Cambridge University Press)
  • 2Konopechenko B 1993 Solitons in Multidimensions, Inverse Spectral Transform Method (Singapore: World Scientific)
  • 3Kadomtsev B B and Petviashvili V I 1970 Dokl. Akad. Nauk SSSR 192 532
  • 4Satsuma J 1976 J. Phys. Soc. Jpn. 40 286
  • 5Manakov S V, Zakharov V E, Bordag L A, Its A R and Matveev V B 1977 Phys. Lett. A 63 205
  • 6Johnson R S and Thompson S 1978 Phys. Lett. A 66 279
  • 7Galkin V M, Pelinovsky D E and Stepanyants Y A 1995 Physica D 80 246
  • 8Pelinovsky D E 1998 J. Math. Phys. 39 5377
  • 9Liu Q P and Manas M 1999 J. Nonlinear Sci. 9 213
  • 10Miles J W 1979 J. Fluid Mech. 79 157

同被引文献17

  • 1戴正德,蒋慕蓉,戴庆云,李绍林.Homoclinic Bifurcation for Boussinesq Equation with Even Constraint[J].Chinese Physics Letters,2006,23(5):1065-1067. 被引量:9
  • 2[17]Zhengde Dai,Zitian Li,Zhenjiang Liu,et al.Exact Homoclinic Wave and Soliton Solutions for the 2D Ginzburg–Landau Equation[J].Physics Letters A,2008,372(17):3010-3014.
  • 3[1]Perring J K,Akyrme T H.A model Unified Field Equation[J].Nuclear Physics,1962,31:550-555.
  • 4[2]Bullough R K,Caudrey P J.Solitons[M].Berlin:Springer-Verlag,1980:107-121.
  • 5[3]Kvshar Y S,Malomed B A.Solitons in a System of Coupled Korteweg-de Vries Equations[J].Wave Motion,1989,11(3):261-269.
  • 6[4]Joseph K B,Baby B V.Composite Mapping Method for Generation of Kinks and Solitons in the Klein-Gordon Family[J].Phys Rev A,1984,29(5):2899-2901.
  • 7[5]Bishop A R.Thermal Renormalization of the Sine-Gordon Soliton Mass[J].Solid State Communications,1979,30(1):37-40.
  • 8[6]Guyer R A,Serra P,Condat C A,et al.Applications of the Transfer Integral Techniques to Two-Dimensional Lattices[J].Physica A,1986,136(2-3):370-392.
  • 9[7]lo.Lepik.Haar Wavelet Method for Nonlinear Integro-Differential Equations [J].Applied Mathematics and Computation,2006,176(1):324-333.
  • 10[8]Shikuo Liu,Zuntao Fu,Shida Liu.Exact Solutions to Sine-Gordon-Type Equations[J].Physics Letters A,2006,351(1-2):59-63.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部