期刊文献+

多延迟微分方程Runge-Kutta方法的散逸性 被引量:3

Dissipativity of Runge-Kutta Methods for Multidelay Differential Equations
下载PDF
导出
摘要 研究了一类多延迟微分方程数值方法的散逸性问题.介绍了GD(l)-散逸性,并证明了代数稳定的Runge-Kutta方法用于此类问题时是GD(l)-散逸的.该结果表明,所考虑的数值方法继承了方程本身的散逸性. This paper is concerned with the dissipativity of Runge-Kutta methods for multidelay differential equations. The GD (l)-dissipativity is introduced. It is proved that Rtmge-Kutta method is dissipative for mulfidelay differential equations when it is algebraically stable. The result shows that the numerical method considered inherit the dissipativity of the equation.
出处 《吉首大学学报(自然科学版)》 CAS 2007年第4期20-23,共4页 Journal of Jishou University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(1027110010571147) 湖南省教育厅重点科研资助项目(04A057)
关键词 多延迟微分方程 RUNGE-KUTTA方法 散逸性 multidelay differential equations Rtmge-Kutta methods dissipativity
  • 相关文献

参考文献8

二级参考文献21

  • 1范利强,张媛颖,项家祥,田红炯.滞时微分方程二级θ-方法的数值耗散性(英文)[J].系统仿真学报,2005,17(3):599-600. 被引量:2
  • 2肖爱国.一般线性方法的散逸稳定性[J].高等学校计算数学学报,1996,18(2):183-189. 被引量:4
  • 3R.Temam,Infinite-dimensional dynamical systems in mechanics and physics,Springer applied mathematical sciences series 68(1988),Berlin:Springer.
  • 4A.R.Humphries and A.M.Stuart,Runge-Kutta methods for dissipative and gradient dynamical systems,SIAM J.Numer.Anal,31(1994),1452-1485.
  • 5A.T.Hill,Global dissipativity for A-stable methods,SIAM J.Numer.Anal,34(1997),119-142.
  • 6A.T.Hill,Dissipativity of Runge-Kutta methods in Hilbert spaces,BIT,37(1997),37-42.
  • 7C.M.Huang,Dissipativity of Runge-Kutta methods for dynamical systems with delays,IMA J.Numer.Anal,20(2000),153-166.
  • 8C.M.Huang,Dissipativity of one-lag methods for dynamical systems with delays,Appl Numer.Math,35(2000),11-22.
  • 9H.J.Tian,Numerical and analytic dissipativity of the θ-method for delay differential equation with a bounded variable lag,International Journal of Bifurcation and Chaos,14(2004),1839-1845.
  • 10K.L.Cooke,J.A.Wiener,Retarded differential equations with piecewise constant delays,J.Math.Anal.Appl,99(1984),265-297.

共引文献28

同被引文献17

  • 1文立平,余越昕,李寿佛.一类求解分片延迟微分方程的线性多步法的散逸性[J].计算数学,2006,28(1):67-74. 被引量:16
  • 2A.R.Humphries,A.M.Stuart.Runge-Kutta methods for dissipative and gradient dynamical systems[J].SIAM J.Numer.Anal.,1994 (31):1 452-1 485.
  • 3L.Wen,W.Wang,Y.Yu.Dissipativity of θ-methods for a class of nonlinear neutral delay differential equations[J].Appl.Math.Comput.,2008,202 (2):780-786.
  • 4C.Huang.Dissipativity of Runge-Kutta methods for dynamical systems with delays[J].IMA J.Numer.Anal.,2000 (20):153-166.
  • 5C.Huang.Dissipativity of one-leg methods for dynamical systems with delays[J].Appl.Numer.Math.,2000 (35):11-22.
  • 6L.Wen,S.Wang,Y.Yu.Dissipativity of Runge-Kutta methods for neutral delay integro-differenti-al equations[J].Applied Mathematics and Computation,2009,215 (2):583-590.
  • 7A.T.Hill.Dissipativity of Runge-Kutta methods in Hilbert spaces,BIT,1997a (37):37-42.
  • 8Humphries A R, Stuart A M. Runge - Kutta methods for dissipative and gradient dynamical systems [ J ]. SIAM J. Number. Anal, 1994,31 : 1452 - 1485.
  • 9Wen L, Wang W, Yu Y. Dissipativity of θ - methods for a class of nonlinear neutral delay differential equations[ J ]. Appl, Math. Comput ,2008,202 ( 2 ) :780 - 786.
  • 10Huang C. Dissipativity of Runge - Kutta methods for dynamical systems with delays [ J ]. IMA J. Numer. Anal. ,2000,20:153 - 166.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部