摘要
研究了一类多延迟微分方程数值方法的散逸性问题.介绍了GD(l)-散逸性,并证明了代数稳定的Runge-Kutta方法用于此类问题时是GD(l)-散逸的.该结果表明,所考虑的数值方法继承了方程本身的散逸性.
This paper is concerned with the dissipativity of Runge-Kutta methods for multidelay differential equations. The GD (l)-dissipativity is introduced. It is proved that Rtmge-Kutta method is dissipative for mulfidelay differential equations when it is algebraically stable. The result shows that the numerical method considered inherit the dissipativity of the equation.
出处
《吉首大学学报(自然科学版)》
CAS
2007年第4期20-23,共4页
Journal of Jishou University(Natural Sciences Edition)
基金
国家自然科学基金资助项目(1027110010571147)
湖南省教育厅重点科研资助项目(04A057)