期刊文献+

一类非线性薛定谔方程的多解的存在性(英文) 被引量:1

Multiple Solutions for a Class of Nonlinear Schrdinger Equations
下载PDF
导出
摘要 本文讨论了如下一类非线性薛定谔方程:-Δu+V(x)u=f(u),x∈RN,在H1(RN)中无穷多解的存在性,其中N≥3,V(x)是RN上的实值连续函数并且满足对x∈RN,V(x)≥V0>0. In this paper,we show that the nonlinear Schrodinger equation -△u+V(x)u=f(u),x∈R^N,where N〉3 and the potential V(x) is a continuous function satisfying V(x)≥V0〉0 for all x∈ R^N,possesses infinitly many solutions in H^1(RN).
出处 《应用数学》 CSCD 北大核心 2007年第4期640-645,共6页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China(10571175 ,10631030)
关键词 存在性 无穷多解 薛定谔方程 Existence Infinitely many solutions Schr(o)dinger equation
  • 相关文献

参考文献10

  • 1Alama S,Li Y Y.On multibump hound states for certain semilinear equations[J].Indiana J.Math,1992,41:983-1026.
  • 2Ambrosetti A,Rabinowitz P.Dual variational methods in critical point theory and applications[J].J.Funct.Anal,1973,14:349-381.
  • 3Bartolo P,Benci V,Fortunato D.Abstract critical theorems and applications to some nonlinear problems with strong resonance at infinity[J].Nonlinear Anal,1983,7:981-1012.
  • 4Bartsch T,Wang Z.Existence and multiplicity results for some superlinear elliptic problems on RN[J].Comm.PDE,1995,20:1725-1741.
  • 5Costa D G.On a class of elliptic systems in RN[J].Electronic J.Diff.Eq,1996,9:295-303.
  • 6Coti-Zelati V,Rabinowitz P.Homoclinic type solutions for a semilinear elliptic PDE on RN[J].Comm.Pure.appl.Math,1992,46:1217-1269.
  • 7Ding Yanheng,Lee Cheng.Multiple solutions of Schr(o)dinger equations with indefinite linear part and super or asymptotically linear terms[J].J.Diff.Eq,2006,222:137-163.
  • 8Ding Yanheng,Luan Shixia.Multiple solutions/or a class of nonlinear Schr(o)dinger equations[J].J.Diff.Eq,2004,27:423-457.
  • 9Li G B.Zhou H S.Multiple solutions ti p-Laplacian problems with asymptotic nonlinearity as uP-1 at infinity[J].J.London Math.Soc,2002,65:123-138.
  • 10Rabinowitz P H.On a class of nonlinear Schoodingcr equations[J].Z.Angew.Math.Phys,1992,43:270-291.

同被引文献6

  • 1Bartsch T, Wang Z. Existence and multiplicity results for some superlinear elliptic problems on R^N [J]. Comm Partial Differential Equations, 1995,20:1 725- 1 741.
  • 2Costa D. On a class of elliptic systems in R^N [J]. Electronic J Differential Equations, 1996 (9) : 295- 303.
  • 3Rabinowitz P. On a class of nonlinear Schrodinger equations [J]. Z Angew Math Plays, 1992, 43 : 270- 291.
  • 4Ding Y, Lee C. Multiple solutions of Schrodinger equations with indefinite linear part and super or asymptotically linear terms [J]. J Differential Equations, 2006,222 : 137-163.
  • 5Furtatdo M,Maia L,Silva E. Solutions for a resonant elliptic system with coupling in R^N[J]. Comm Partial Differential Equations, 2002,27 : 1 515-1 536.
  • 6Silva E. Subharmonic solutions for subquadratie Hamiltonian systems [J]. J Differential Equations, 1995,115:120-145.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部