摘要
本文讨论了如下一类非线性薛定谔方程:-Δu+V(x)u=f(u),x∈RN,在H1(RN)中无穷多解的存在性,其中N≥3,V(x)是RN上的实值连续函数并且满足对x∈RN,V(x)≥V0>0.
In this paper,we show that the nonlinear Schrodinger equation -△u+V(x)u=f(u),x∈R^N,where N〉3 and the potential V(x) is a continuous function satisfying V(x)≥V0〉0 for all x∈ R^N,possesses infinitly many solutions in H^1(RN).
出处
《应用数学》
CSCD
北大核心
2007年第4期640-645,共6页
Mathematica Applicata
基金
Supported by the National Natural Science Foundation of China(10571175 ,10631030)
关键词
存在性
无穷多解
薛定谔方程
Existence
Infinitely many solutions
Schr(o)dinger equation