摘要
用奇摄动的Lindstedt-Poincare方法消去长期项,得到了一类非线性奇摄动微分方程的渐近解,并把著名的Duffing方程作为它的特例说明了这种方法的正确性,因而这种方法可以用来逼近许多非线性微分方程在无穷区间上的解.
This paper, discussed the asymptotic solutions for a class of nonlinear singularly perturbed differential equations by removing secular terms with Lindstedt-Poincare technique, a singularly Perturbations method. The famous Dulling equation is used as an example to illustrate the correctness of the technique. Therefore, this technique can be used to approach the solutions on an infinite interval for many nonlinear differential equations.
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
2007年第3期325-327,共3页
Journal of Central China Normal University:Natural Sciences
基金
安徽省自然科学基金资助项目(050460103)
安徽高等学校省级自然科学研究基金资助项目(KJ2007B028).
关键词
非线性方程
奇摄动
混合长期项
nonlinear equation
singular perturbation
mixed-secular terms