期刊文献+

基于背包和椭圆曲线相结合的签名方案

A Digital Signature Scheme Based on Knap Sack Problem and Elliptic Curve Public-key Cryptosystem
下载PDF
导出
摘要 背包问题和离散对数问题都是著名难解问题,椭圆曲线密码体制具有很高的安全性。本文根据背包问题的特性和椭圆曲线公钥密码体制的特点提出了一种基于背包和椭圆曲线相结合的签名方案,该方案经过改动后还可以用于零知识证明,在实际应用中该方案具有很高的安全性、可靠性。 Both knap sack problem and discrete logarithm problem are difficultly solved.This paper proposes a digital signature scheme based on the property of knap sack problem and elliptic curve public-key cryptosystem.The modified scheme can also be used in zero-knowledge proof,and has high security and reliability in practice.
出处 《河南科技大学学报(自然科学版)》 CAS 2007年第6期36-39,共4页 Journal of Henan University of Science And Technology:Natural Science
基金 国家自然科学基金项目(10671056) 河南大学重点基金项目(05ZDZR001)
关键词 背包问题 椭圆曲线 数字签名 零知识证明 Kanp sack problem Elliptic curve Digital signature Zero-knowledge proof
  • 相关文献

参考文献9

  • 1Markle R C,Hellman M E.Hiding Information and Signatures in Trapdoor Knapsack[Z].IEEE Inform Theory,1978,IT-24:525-530.
  • 2Shamir A,Zippel R E.On the Security of the Merkle-Hellman Cryptographic Scheme[Z].IEEE Inform Theory,1980,IT-24:525-530.
  • 3Odlyzko A M.The Rise and Fall of Knapsack Cryptosystems[Z].Cryptology and Computational Number Theory,1990,42.
  • 4Goster M J.An Improved Low-density Subset Sum Algorithm[Z].Advances in Cryptology EUROCRYPT' 91,1991.
  • 5Odlyzko A M.Discrete logarithms:The Past and the Future[J].Designs,Codes,and Cryptography,2000(19):129-145.
  • 6郭宝安,卢开澄.基于背包问题的身份认证方案[J].计算机科学,1995,22(6):19-21. 被引量:3
  • 7Koblitz N,Menezes A,Vanstone S.The State of Elliptic Curve Cryptography[J].Designs,Codes and Cryptography,2000(19):173-793.
  • 8IPS Publication 180-2.Secure Hash Standard (Change Notice 1)[Z].U S.DoC/NIST.February,2004,25:72-79.
  • 9Quisquater J J,Guillou L.How to Explain Zero-knowledge Protocols to Your Children[J].Lecture Notes in Computer Science,1990,435:628-631.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部