期刊文献+

一种改进的选择神经网络集成方法 被引量:1

An Improved and Selective Approach of Neural Network Ensemble
下载PDF
导出
摘要 提出一种改进的选择神经网络集成方法,首先构造一批单个神经网络个体,分别利用Bootstrap算法产生若干个训练集并行进行训练;然后采用聚类算法计算训练好的个体网络之间的差异度和个体网络在验证集的预测精度;最后根据个体精度和个体差异度选择合适的个体网络加入集成。实验结果验证,该集成方法能较好地提高集成的预测精度和泛化能力。 Proposes an improved and selective neural network ensemble method named ISEN, firstly constructs a component neural networks which are trained parallely using samples by bootstrap algorithm, then ISEN selects those having better accuracy according to results from validation set and dissimilarity with others which are calculated by clustering algorithm. Experiment results show that ISEN can improve prediction accuracy and generalization ability of the ensemble.
出处 《现代计算机》 2007年第10期17-19,35,共4页 Modern Computer
基金 华南农业大学新学科扶持基金(2005X027)
关键词 神经网络 选择性集成 泛化能力 Neural Network Selective Ensemble Generalization Capability
  • 相关文献

参考文献8

  • 1Hansen L K, Salamon P. Neural Network Ensembles. IEEE Trans Pattern Analysis and Machine Intelligence, 1990, 12 (10): 99321001.
  • 2Krogh A,Vedelsby J.Neural Network Ensembles. Crossvalidation, and Active Learning. Tesauro D, Touretzky D, Leen T, eds Advances in Neural Information Processing Systems 7. Cambridge: MIT Press, 1995:231-238
  • 3ZHOU Zhi-hua, WU Jian-xin, JIANG Yuan, CHEN Shi-fu. Genetic Algorithm Based Selective Neural Network Ensemble. Proc of IJCAI-01, Seattle, WA, 2001,2:797-802.
  • 4LIU Yue, LI Yuan, LI Guo-zheng, ZHANG Bo-feng, WU Geng-feng. Constructive Ensemble of RBF Neural Net- works and Its Application to Earthquake Prediction.Proceeding of International Symposium on Neural Networks 2005 (ISNNOS), Chongqing, China, LNCS, Springer, 2005, Part I: 532-537.
  • 5Efron B, Tibshirani R. An Introduction to the Bootstrap. Chapman&Hall New York,1993.
  • 6Stone M. Cross-validation: A Review. Mathematische Operationsforschung Statistischen. Serie Statistics, 1978, 9:127-139.
  • 7Han J, Kamber M. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers,2000.
  • 8Simon Hayki.神经网络原理.叶世伟,史忠植译.北京:机械工业出版社,2004.

同被引文献12

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部