期刊文献+

镜头边界检测的动态窗口技术 被引量:2

Dynamic Window Technique in Shot Boundary Detection
下载PDF
导出
摘要 提出了一种新的镜头边界检测算法.该算法借鉴信息论的观点,以互信息量和直方图的结合来衡量帧间相似度.通过一自动选取的阈值选出所有可能的镜头切换点,采用动态窗口技术将切变和渐变统一视为切变检测.通过合理的聚类消除噪音所带来的误检现象,提高了镜头的检出率.仿真实验结果表明该算法具有良好的性能. Based on the theory of information a new shot boundary detection algorithm is proposed. This method is used to indicate the similarity between two image frames through combining mutual information with histogram. All the possible situation of shot switch is selected through a threshold which is generated automatically. Using dynamic window unifies abrupt cuts and gradual cuts, processing all as abrupt transition. A clustering algorithm is applied to avoid the error detection by the noise. Experimental results show this algorithm has good performance.
作者 田玉敏 王昊
出处 《光子学报》 EI CAS CSCD 北大核心 2007年第10期1949-1953,共5页 Acta Photonica Sinica
关键词 镜头边界检测 互信息量 阈值选择 动态窗口 Shot boundary detection Mutual information Threshold selection Dynamic window
  • 相关文献

参考文献9

二级参考文献38

  • 1李明,吴艳,吴顺君.基于小波多通道特征级融合的彩色纹理图像分析[J].光子学报,2004,33(8):999-1003. 被引量:6
  • 2李峰,胡岩峰,曾志明,李立钢,刘波.一种遥感影像基于内容检索模型的研究与设计[J].光子学报,2004,33(12):1522-1525. 被引量:11
  • 3Lam L, Lee S W, Suen C Y. Thinning methodologies-a comprehensive survey. IEEE Trans PAMI, 1992,14 (9) :869~ 885.
  • 4Guo Z, Hall R W. Parallel thinning with two-subiteration algorithm Comm ACM, 1989,32 (3) :359 ~ 373.
  • 5Baruch O. Line thinning by line following. Pattern Recognition Letters, 1988,8(4) :271 ~ 276.
  • 6Han C C, Fan K C. Skeleton generation of engineering drawings via contour matching. Pattern Recognition, 1994,27(2) :261 ~ 275.
  • 7Li Yushan, Huang Chichai. Noncontact measurement using line-scan cameras: analysis of positioning error. IEEE Trans on Industrial Electronics, 1989,36(4) :545 ~ 551.
  • 8Xu Wen, Wang Chengxun CGT: A fast thinning algorithm implementation on a sequential computer. IEEE Trails on System,Man and Cybernetics. 1987.17(5) :841 -854.
  • 9O' Gorman L. An analysis of feature detectability from curvature estimation. Proc of Computer Vision and Pattern Recognition Conforence Ann Harbor, 1988.235 ~ 240.
  • 10Xiong W,Computer Vision Image Understand,1998年,71卷,2期,166页

共引文献58

同被引文献24

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部