摘要
从Banach空间结构和算子构成的互动作用这一视角,介绍Gowers-Maurey系列成果研究深化的某些新动向.全文分为:H.I.型空间研究新成果;G-M基本定理与"平方-立方猜想";本性不可比空间与G猜想;Pisier空间相关研究和关于K群K_i(B(X))的一些猜想等5小节.
In the viewpoint of the interaction between the structure of Banach spaces and operators, this paper introduces some recent developments about a series of the Gowers and Maurey's results. It composes of five sections. They include some results about the study of H. I. spaces; G-M's Basic Theorem and the "square-Cubic Conjecture"; Essentionally incomparable Banach spaces and the conjecture of M. Gonzalez; Related studies to Pisier's Space; And some conjectures of the K-groups Ki(B(X)) of some Banach space X.
出处
《数学进展》
CSCD
北大核心
2007年第5期530-538,共9页
Advances in Mathematics(China)
基金
国家自然科学基金(No.10471025)
福建省自然科学基金(No.S0650009
No.2006J0203)资助