期刊文献+

基于在线聚类的多模型软测量建模方法 被引量:28

Multiple models soft-sensing technique based on online clustering arithmetic
下载PDF
导出
摘要 针对石化行业中软测量建模样本的特性,提出一种基于在线聚类和v-支持向量回归机(vSVR)的多模型软测量建模方法。在vSVR建模过程中,通过在线聚类算法改善了vSVR模型参数选择算法的稳定性,并用vSVR参数的先验知识和KKT条件实现模型参数的快速寻优,提高了模型的学习效率和精度。该建模方法在加氢裂化分馏塔装置的轻石脑油终馏点在线预测系统中取得了良好的效果。 In order to use the properties of samples, a soft-sensing method with multiple models based on an online clustering arithmetic and v-support vector regression (vSVR) was presented. The parameter selection of vSVR is improved faster and robust by a new cross validation method using the online clustering arithmetic and parameter' s prior knowledge. The proposed soft-sensing method was used to predict the light naphtha end point in hydrocracker fractionators. Practical applications indicated the proposed method was useful for the online prediction of quality specifications in chemical processes.
出处 《化工学报》 EI CAS CSCD 北大核心 2007年第11期2834-2839,共6页 CIESC Journal
基金 国家高技术研究发展计划项目(2006AA040309) 国家重点基础研究发展计划项目(2007CB714000)~~
关键词 多模型 软测量 在线聚类 v-支持向量回归机 k-交叉验证算法 multiple models soft-sensing online clustering v-support vector regression k-fold crossvalidation
  • 相关文献

参考文献10

  • 1Zhong Wei (仲蔚). Studies on soft sensing and advanced control strategies with application in petrochemical processes [D]. Shanghai: East China University of Science and Technology, 1999.
  • 2张宇,李柠,黄道.基于多神经网络模型的酯化反应软测量[J].华东理工大学学报(自然科学版),2005,31(2):208-211. 被引量:7
  • 3桂卫华,李勇刚,阳春华,陈志盛.基于改进聚类算法的分布式SVM及其应用[J].控制与决策,2004,19(8):852-856. 被引量:13
  • 4许伟.软测量技术及其应用中应注意的问题[J].炼油技术与工程,2005,35(10):40-43. 被引量:3
  • 5Song Qun, Kasabov N. ECM a novel on-line, evolving clustering method and its applications//Proceedings of the Fifth Biannual Conference on Artificial Neural Networks and Expert Systems (ANNES2001). Dunedin, New Zealand: University of Otago Printery, 2001:87-92.
  • 6Kasabov N, Song Qun. DENFIS:dynamic evolving neural fuzzy inference system and its application for time series prediction. IEEE Transaction on Fuzzy Systems, 2002, 10 (2): 144-154.
  • 7Cheng Shouxian, Frank Y. An improved incremental training algorithm for support vector machines using active query. Pattern Recognition, 2007, 40 (3) : 964-971.
  • 8Smola J, Scholkopf B. A tutorial on support vector regression. Statistics and Computing, 2001, 12:212-226.
  • 9Athanassia C, Scholkopf B, Smola J. Experimentally optimal v in support vector regression for different noise models and parameter settings. Neural Networks, 2005, 18 (2):127-141.
  • 10颜学峰,余娟,钱锋.基于自适应偏最小二乘回归的初顶石脑油干点软测量[J].化工学报,2005,56(8):1511-1515. 被引量:24

二级参考文献29

  • 1张永玲.国外PET制造过程工程研究进展[J].聚酯工业,1993,6(1):31-49. 被引量:3
  • 2拉皮德斯L 阿蒙特森NR.化学反应器理论[M].北京:石油工业出版社,1984..
  • 3Ray W H. On the mathematical modeling of polymerization reactors [J]. Macromol Sci Rev Macromol Chem, 1972, (8):1-56.
  • 4Ray W H. Dynamic behavior of polymerization reactors:Modeling of chemical reaction systems [A]. Proceeding of International Workshop [C]. Germany: Heidelberg, 1980.237-254.
  • 5Ray W H. Polymerization reactor control[J]. IEEE Control System Magazine, 1986, 8: 3-8.
  • 6Bates J M, Granger C W J. The combination of forecasts[J].Operations Research Quarterly, 1969, 20: 319-325.
  • 7Roubos J A, Krabben P, Sentens M. Hybrid model development for fed-batch bioproeesses: Combining physical equations with the metabolic network and black-box kineties[D].Delft:Delft University of Technology, 1999.
  • 8Pottmann M, Unbehauen H, Seborg D E. Application of a general multi-model approach for identification of highly nonlinear processed: A case study[J]. Int J Control, 1993, 57(1) :97-120.
  • 9Zadeh L A. Fuzzy sets [J]. Inf Cont, 1965, (8):338-353.
  • 10Corinna Cortes, Vladimir Vapnik. Support vector networks[J]. Machine Learning,1995,20(3):273-295.

共引文献41

同被引文献285

引证文献28

二级引证文献225

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部