期刊文献+

半线性弹性动力学方程组的余法分布空间

Conormal Distribution Spaces of Semilinear Elastic Dynamical System
下载PDF
导出
摘要 文章对半线性弹性动力学方程组的初值奇性传播问题建立了余法分布空间,然后讨论了该空间的一些基本性质,最后得到了该空间的拟微分算子与两个二阶微分算子可进行交换运算的结果。这对于在余法分布框架下研究半线性弹性动力学方程组的初值奇性传播问题是很重要的。 In this paper, we construct conormal distribution spaces on the propagation of initial singularities for semilinear elastic dynamical system, then discuss the character of the spaces, and last prove the theorems of exchange operation which are conducted by pseudo-differential operators in the conormal distribution spaces and two second-order differential operators, this is very important for deeply studying the propagation of initial singularities for semilinear elastic dynamical system in the conormal distribution spaces.
出处 《四川理工学院学报(自然科学版)》 CAS 2007年第5期54-57,共4页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金 四川理工学院科研项目(2004ZR024)
关键词 半线性弹性动力学方程组 奇性传播 余法分布空间 算子 向量场 拟微分算子 semilinear elastic dynamical system propagation of singularity conormal distribution space vector field pseudo-differential operator
  • 相关文献

参考文献12

  • 1Beals M.Nonlinear wave equations with data singular at one point[J].Contemp.Math,1984,27:83-95.
  • 2Bony J M.Singularities des solutions des problems de Cauclvy hyperbolic ues nonlinear es.Adrances[J].in Micro local Analysis,1986,15-34.
  • 3Chen S X.Propagation of Singularities of solutions to hyperblicparabolic coupled system[J].Mathematische Nachrichten,2002,242:46-60.
  • 4Chen S X.Propagation of singularities in compressible viscous fluids[J].AMS/IP,2002:13-25.
  • 5Chemin J Y.Regularite de la solution d'un problem de cauchy fortement nonlinear e doness singularit es enur point.Ann Inst Fourier[J].1989,39:101-121.
  • 6Chenmin J Y.Evolution d'une singularities' pounctuelle dans des equations strictement hyperboliques nonline'aires[J].Amer.J.Math,1990,112:805-860.
  • 7Eringen A C,Suhubi E S.Elastodynamics[M].VolⅡ,London:Academic press,1975.
  • 8Wang Y G.The Semi linear second-order hyperbolic equation with data strongly singular at one point[J].Monatsh.Math,1994,117:285-302.
  • 9Wang Y G.Microlocal analysis in nonlinear thermoelasticity[J].Nonlinear Anal.2003,54:683-705.
  • 10Yang L.Propagation of singularities in Cauchy Problems for quasilinear thermo elastic systems in three space variables[J].Journal of Mathematical Analysis and Applications,2004,291:638-652.

二级参考文献18

  • 1LITATSIEN,WANGLIBIN.GLOBAL EXISTENCE OF WEAKLY DISCONTIN UOUS SOLUTIONS TO THE CAUCHY PROBLEM WITH A KIND OF NON-SMOOTH INITIAL DATA FOR QUASILINEAR HYPERBOLIC SYSTEMS[J].Chinese Annals of Mathematics,Series B,2004,25(3):319-334. 被引量:10
  • 2Xu Yumei.FORMATION OF SINGULARITIES FOR QUASILINEAR HYPERBOLIC SYSTEMS WITH CHARACTERISTICS WITH CONSTANT MULTIPLICITY[J].Journal of Partial Differential Equations,2005,18(4):355-370. 被引量:2
  • 3Beals, M. & Reed, M., Propagation of singularities for hyperbolic pseudodifferential operators with non-smooth coefficients [J], Comm. Pure. Appl. Math., 35(1982), 169-184.
  • 4Bony, J. M., Calcul symbolique et propagation des sigularites pour les equations aux derivees partelles non-linearies [J], Ann. Scient. E. N. S., 14(1981), 209-246.
  • 5Chen, S., Qiu, Q. J. & Li, C. Z., Introduction to Paradifferential Operators [M], Sci.Publishers, 1990 (in Chinese).
  • 6Chen, S., Analysis of Singularities for Partial Differential Equations [M], Shanghai Sci.& Tech. Publishers, 1998 (in Chinese).
  • 7Chen, S. & Wang, Y. G., Propagation of singularities of solutions to hyperbolic-parabolic coupled system [J], Math. Nachr., 242(2002), 46-60.
  • 8Chen, S. & Wang, Y. G., Propagation singularities in compressible viscous fluids [A],in Geometry and Nonlinear Partial Differential Equations [M], S. Chen & S. T. Yau (eds.), AMS/IP, 2002, 13-25.
  • 9Dafermos, C. M. & Hsiao, L., Development of singularities in solutions of the equations of nonlinear thermoelasticity [J], Quart. Appl. Math., 44:3(1986), 463-474.
  • 10Jiang, S. & Racke, R., Evolution Equations in Thermoelasticity [M], Chapman & Hall/CRC Monographs and Surveys in Pure and Appl. Math. Vol. 112, Chapman & Hall/CRC, 2000.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部