期刊文献+

SiC_P/Al功能梯度装甲板抗侵彻性能的试验与数值模拟 被引量:7

Penetration of SiC_P/Al functionally graded plates——Experiment and numerical simulation
下载PDF
导出
摘要 采用粉末冶金方法制备碳化硅陶瓷颗粒(SiCP)增强金属铝基复合材料板(MMCs),并采用热压扩散法制备功能梯度装甲板(FGM)。利用高速冲击空气炮系统,对纯铝靶板和两种不同铺层结构的功能梯度装甲靶板进行侵彻试验,并利用LS-DYNA软件对侵彻试验过程进行数值模拟分析,同时考察等厚、等面密度下SiC颗粒分布对抗侵彻性能的影响。研究结果表明,功能梯度板的抗侵彻性能比纯铝板好,而两种不同铺层结构功能梯度板的抗侵彻性能相差不大。数值计算结果与现有试验结果取得了较好的一致,说明了数值模拟的有效性。从数值计算结果可以看出,层状功能梯度板比等厚、等面密度均质复合材料靶板的抗侵彻能力好,并可近似地认为等厚、等面密度下多层功能梯度板的抗侵彻性能对颗粒分布不敏感。 The penetration tests of two kinds of functionally graded plates (FGM) were performed by using a high speed air-gun system. The plates consist of layered structures with two stack sequences prepared by the vacuum hot - pressure diffusion processing. Each layer is made from aluminum matrix composites reinforced by different volume fraction SiC particles (MMCs) by the vacuum hot-pressure sintering method. The numerical simulations of penetra- tion process were carried out by LS-DYNA code. The numerical simulations were also performed to explore the op- timal distribution of certain average SiCv fraction. The test results show that the anti-penetration ability of the func- tionally graded plate is much better than that of the pure aluminum plate. The difference of anti-penetration ability between the two tested functionally graded plates is not apparent. The numerical simulation results are in good agreement with experimental results. From the simulation results, the layered plates have superior anti-penetration ability to the that of homogeneity plate of MMCs. And the anti-penetration of layered plates with the same thickness and the same areal density can be approximately regarded as not sensitive to the particle distribution.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2007年第5期6-12,共7页 Acta Materiae Compositae Sinica
基金 国防基础科研基金项目(A2720060277)
关键词 侵彻 LS-DYNA 功能梯度装甲板 碳化硅颗粒 数值模拟 penetration LS-DYNA functionally graded plate SiC particle numerical simulation
  • 相关文献

参考文献15

  • 1Bless S J, Jurick D L, Timothy S P. Ballistic impact behaviour of SiC reinforced aluminum alloy matrix composites [C] // Meyers M A, Murr L E, Staudhammer K P. In Shock-Wave and High Strain Rate Phenomena in Materials. New York: Marcel Dekker Inc, 1992: 1051-1058.
  • 2Vaziri R, Delfosse D, Pageau G. High-speed impact response of particulate metal matrix composite materials An experimental and theoretical investigation [J]. Int J Impact Engng, 1993, 13(2): 329-352.
  • 3Li Y, Ramesh K T, Chin E S C. Dynamic characterization of layered and graded structures under impulsive loading [J]. Int J of Solids Struct, 2001, 38(34/35): 6045-6061.
  • 4李玉龙,周宏霞,徐绯,郭伟国.组份成分分布规律对功能梯度防护装甲动态响应的影响[J].复合材料学报,2005,22(4):58-67. 被引量:3
  • 5Bruck H A. A one-dimensional model for designing functionally graded materials to manage stress waves [J]. Int J of Solids Struct, 2000, 37(44): 6383-6395.
  • 6Berezovski A, Engelbrecht J, Maugin G A. Numerical simulation of two-dimensional wave propagation in functionally graded materials [J]. European Journal of Mechanics A/Solids, 2003, 22(2): 257-265.
  • 7Chakraborty A, Gopalakrishnan S. A speetrally formulated finite element for wave propagation analysis in functionally graded beams [J]. Int J of Solids Struet, 2003, 40 (10): 2421-2448.
  • 8蒋宝权,李玉龙,刘元镛,虞青俊.SiC增强颗粒分布规律对梯度装甲板抗侵彻过程的影响[J].爆炸与冲击,2005,25(6):493-498. 被引量:6
  • 9BΦrvik T, Hopperstad O S, Berstad T. Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses: Part Ⅱ : Numerical simulations [J]. Int J Impact Eng, 2002, 27(1): 37-64.
  • 10Espinosa H D, Dwividi S, Zavatieri P D. A numerical investigation of penetration in multilayered material/structure systems [J]. Int J Solids Struct, 1998, 35(22): 2975-3002.

二级参考文献43

  • 1李玉龙,周宏霞,徐绯,郭伟国.组份成分分布规律对功能梯度防护装甲动态响应的影响[J].复合材料学报,2005,22(4):58-67. 被引量:3
  • 2Vaziri R, Delfosse D, Pageau G, et al. High-speed impact response of particulate metal matrix composite materials: An experimental and theoretical investigation [J]. International Journal of Impact Engineering, 1993, 13(2): 329-35.
  • 3Li Y, Ramesh K T, Chin E S C. Dynamic characterization of layered and graded structures under impulsive loading [J].International Journal of Solids and Structures, 2001,38(34-35) : 6045-6061.
  • 4Babaei R, Lukasiewicz S A. Dynamic response of a crack in a functionally graded material between two dissimilar half planes under anti-plane shear impact load [J]. Engineering Fracture Mechanics, 1998, 60(4): 479-487.
  • 5Parameswaran V, Shukla A. Crack-tip stress fields for dynamic fracture in functionally gradient materials [J]. Me chanics of Materials, 1999, 31(9): 579-596.
  • 6Rousseau C E, Tippur H V. Influence of elastic gradient profiles on dynamically loaded functionally graded materials:Cracks along the gradient [J]. International Journal of Sol ids and Structures, 2001, 38(44-45): 7839-7856.
  • 7Chakraborty A, Gopalakrishnan S. A spectrally formulated finite element for wave propagation analysis in functionally graded beams [J]. International Journal of Solids and Structures, 2003, 40 (10): 2421-2448.
  • 8Berezovski A, Engelbrecht J, Maugin G A. Numerical simu lation of two-dimensional wave propagation in functionally graded materials [J]. European Journal of Mechanics-A/Solids, 2003, 22(2): 257-265.
  • 9Liu G R, Han X, Lam K Y. Stress waves in functionally gradient materials and its use for material characterization [J].Composites Part B : Engineering, 1999, 30(4): 383-394.
  • 10Liu G R, Han X, Xu Y G, et al. Material characterization of functionally graded material by means of elastic waves and a progressive-learning neural network [J]. Composites Science and Technology, 2001, 61(10): 1401-1411.

共引文献19

同被引文献131

引证文献7

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部