摘要
The t-SNARE protein SNAP-25 (synaptosome-associated protein of 25 kDa) plays an essential role in regulating fusion between the vesicle and plasma membranes during exocytosis. To clone and characterize SNAP-25 gene, the first step in the functional study of SNARE proteins in marine teleostean, was to obtain the cDNA of sea perch SNAP-25 (SPsn25) by RT-PCR and RACE-PCR amplification of a Japanese sea perch. The full-length cDNA of 831bp contains a CDS of 615 bp, coding 204 amino acid residues, and a 5′UTR of 219bp. Bioinformatic analysis revealed that SPsn25 corresponds with SNAP-25a isoform and shares 91.1% identity with SNAP-25a of a goldfish and a zebrafish. The SPsn25 expression in both mRNA and protein levels in the Japanese sea perch had been identified through semi-quantitative RT-PCR and Western Blot assay. Together, these data again confirmed the nerve tissue specificity of the fish SNAP-25 gene expression.
The t-SNARE protein SNAP-25 (synaptosome-associated protein of 25 kDa) plays an essential role in regulating fusion between the vesicle and plasma membranes during exocytosis. To clone and characterize SNAP-25 gene, the first step in the functional study of SNARE proteins in marine teleostean, was to obtain the cDNA of sea perch SNAP-25 (SPsn25) by RT-PCR and RACE-PCR amplification of a Japanese sea perch. The full-length cDNA of 831 bp contains a CDS of 615 bp, coding 204 amino acid residues, and a 5'UTR of 219bp. Bioinformatic analysis revealed that SPsn25 corresponds with SNAP-25a isoform and shares 91.1% identity with SNAP-25a of a goldfish and a zebrafish. The SPsn25 expression in both mRNA and protein levels in the Japanese sea perch had been identified through semi-quantitative RT-PCR and Western Blot assay. Together, these data again confirmed the nerve tissue specificity of the fish SNAP-25 gene expression.
基金
the NSFC (No.40476060)
Hi-Tech Research and Development Program of China (No. 2002AA629120)