摘要
A new double-arch structure for the gate used as tidal barrage and sluice was adopted in Caoe River Dam in China. It was a spatial structure made up of the right arch, the invert arch, the chord, etc., and was designed to bear bilateral loads. To research the cyclic behavior of the new double-arch structure, a scale-model cyclic test was conducted. First, the test setup and test method were presented in detail, and according to the test results, the cyclic behavior and failure characteristics of this structure were discussed. Then by analyzing the test cyclic envelope curve, it was found the curve was divided into three stages: the elastic stage, the local plastic stage and the failure stage at the local yield point and structural yield point. The gate model has local yield strength and structural yield strength, with both their values being bigger than that of the designing load. Therefore, the gate is safe enough for the projects. At last, dynamic property of the gate was analyzed considering additional mass of the water. It was found that the tidal bore shock would not cause resonance vibration of the gate.
A new double-arch structure for the gate used as tidal barrage and sluice was adopted in Caoe River Dam in China. It was a spatial structure made up of the right arch, the invert arch, the chord, etc., and was designed to bear bilateral loads. To research the cyclic behavior of the new double-arch structure, a scale-model cyclic test was conducted. First, the test setup and test method were presented in detail, and according to the test results, the cyclic behavior and failure characteristics of this structure were discussed. Then by analyzing the test cyclic envelope curve, it was found the curve was divided into three stages: the elastic stage, the local plastic stage and the failure stage at the local yield point and structural yield point. The gate model has local yield strength and structural yield strength, with both their values being bigger than that of the designing load. Therefore, the gate is safe enough for the projects. At last, dynamic property of the gate was analyzed considering additional mass of the water. It was found that the tidal bore shock would not cause resonance vibration of the gate.
基金
Project supported by the Research Foundation for the DoctoralProgram of Higher Education of China (No. 20050335097)
Caoe River Dam Investment Ltd., China