期刊文献+

基于支持向量机的一类混沌系统自适应逆控制 被引量:2

Adaptive inverse control for a class of chaotic systems based on support vector machines
下载PDF
导出
摘要 本文研究了基于支持向量机回归自适应逆控制的混沌控制方法,用支持向量机建立系统的辨识器,同时在控制过程可逆的条件下设计基于支持向量回归的系统逆控制器.将该自适应逆控制的方法应用于Lorenz混沌系统的控制,仿真结果表明在系统带有不确定性和测量噪声的情况下,该方法可以有效的将混沌系统的状态控制到给定状态. A new chaos control method based on support vector machines (SVM) of adaptive inverse control is proposed which has excellent nonlinearity approximation ability and better generalization capability. In this control mechanism, an identifier is established based on support vector regression, and under the inverse condition of control process a controller based on support vector regression also designed. Simulation results also show that under proposed method, uncertain Lorenz system with measurement noise can drive the system state exactly to some specific points.
作者 刘涵 刘丁
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2007年第5期761-765,共5页 Control Theory & Applications
基金 高等学校博士学科点专项科研基金资助项目(20040700010) 陕西省教育厅自然科学专项基金项目(055JK267)
关键词 混沌控制 支持向量机 支持向量回归 自适应逆控制 chaos control support vector machines support vector regression adaptive inverse control
  • 相关文献

参考文献16

  • 1CHEN G, DONG X. From Chaos to Order:Perspectives, Methodologies andApplications[M]. Singapore: World Scientific, 1998.
  • 2UETA T, CHEN G. Bifurcation analysis of Chen's attractor[J].Int J of Bifurcat Chaos, 2000, 10(9): 1917 - 1931.
  • 3OTT E, GREBOGI C, YORKE J A. Controlling chaos[J]. Physical Review Letters, 1990, 64(11): 1196 - 1199.
  • 4FUH C C, TUNG P C. Controlling chaos using differential geometric method[J]. Physical Review Letters, 1995, 75(16): 2952 - 2955.
  • 5SANCHEZ E N, PEREZ J P, MARTINEZ M, CHEN G. Chaos stabilization: an inverse optimal control approach[J]. Latin Am Appl Res:Int J, 2002, 32(1): 111 - 115.
  • 6YASSEN M T. Adaptive control and synchronization of a modified Chua's circuit system[J]. Applied Mathematics and Computation , 2003, 135(1): 113 - 128.
  • 7LU J, ZHANG S. Controlling Chen's chaotic attractor using backstepping design based on parameters identification[J].Physics Letters A, 2001, 286(2/3): 148 - 152.
  • 8陆益民,毛宗源,张波.基于免疫算法的混沌多模型微扰控制[J].控制理论与应用,2004,21(1):30-34. 被引量:7
  • 9刘丁,钱富才,任海鹏,孔志强.离散混沌系统的最小能量控制[J].物理学报,2004,53(7):2074-2079. 被引量:9
  • 10刘涵,刘丁,任海鹏.基于最小二乘支持向量机的混沌控制[J].物理学报,2005,54(9):4019-4025. 被引量:13

二级参考文献35

  • 1刘丁,钱富才,任海鹏,孔志强.离散混沌系统的最小能量控制[J].物理学报,2004,53(7):2074-2079. 被引量:9
  • 2刘涵,刘丁,李琦.一种遗传—模糊神经网络图像滤波器[J].仪器仪表学报,2004,25(3):310-312. 被引量:3
  • 3[1]EDWARD O, CELSO G, JAMES Y A. Controlling chaos [J]. Physical Review Letter, 1990,64(11): 1196-1199.
  • 4[2]DUCHATEAU A, BRADSHAW N P, BERSINI H. A multi-model solution for the control of chaos [J]. Int J Control, 1999, 72(7/8): 727-739.
  • 5[3]HUGUES B. The endogenous double plasticity of the immune network and the inspiration to be drawn for engineering artifacts [M]∥ DASGUPTA D. Artificial Immune Systems and Their Applications. Berlin: Springer-Verlag, 1999: 22-44.
  • 6[5]TOYOO F, KAZUYUKI M, MAKOTO T. Parallel search for multi-modal function optimization with diversity and learning of immune algorithm [M]∥ DASGUPTA D. Artificial Immune Systems and Their Applications. Berlin: Springer-Verlag, 1999:210-220.
  • 7[6]CHUN Jang-sung, KIM Min-kyu, JUNG Hyun-kyo. Shape optimization of electromagnetic devices using immune algorithm [J]. IEEE Trans on Magnetic, 1997, 33(2): 1876-1879.
  • 8[7]Hénon M. A two-dimensional mapping with a strange attractor [J]. Communication in Mathematics Physics, 1976,50(1): 69-77.
  • 9OTT E,GREBOGI C, YORKE J C.Controlling chaos [J].Physical Review Letters, 1990,64(11): 1196 - 1199.
  • 10PYRAGAS K. Continuous control of chaos by self-controlling feedback [ J]. Physics Letters A, 1992,170(6) :421 - 428.

共引文献49

同被引文献15

引证文献2

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部