期刊文献+

一类四阶波动方程的有限差分法 被引量:4

Finite Difference Approximation for a Class of Forth Order Wave Equation
下载PDF
导出
摘要 研究了一类四阶非线性耗散、色散波动方程初边值问题的有限差分解法。对求解方程构造了一个三层隐式差分格式,消除了显格式的稳定性对计算步长的严格限制,使之适用范围更广,并用能量估计的方法严格证明了差分格式的收敛性与稳定性,该格式对于时间和空间均具有二阶收敛性。最后给出了一些数值结果,验证了理论分析的正确性。 This paper considers the finite difference method for a class of generalized fourth order dispersive and dissipative wave equation. In order to get the numerical solution, the paper devises a three hierarchic implicit scheme which eliminates the strict restriction of explicit scheme, thus, it can be used in more areas. By using the energy estimation method, the convergence and stability of the difference scheme are proved and the scheme is second order convergence for time and space. In the last, some numerical results are presented to validate the correctness of the theoretic analysis.
作者 王震 张立伟
出处 《山东科技大学学报(自然科学版)》 CAS 2007年第4期88-91,共4页 Journal of Shandong University of Science and Technology(Natural Science)
关键词 四阶波动方程 差分法 收敛性 稳定性 fourth order wave equation difference method convergence stability
  • 相关文献

参考文献9

  • 1Bogolubsky I L. Some Examples of Inelastic Soliton Interaction[J]. Compuer Physics Communications, 1977,13 (1) : 149- 155.
  • 2Clarkson P A, Leveque R J, Saxton R A. Sonlitary-wave Interaction in Elastic Rods[J]. Studies in Applied Mathematics, 1986,75(1) :95-122.
  • 3庄蔚 杨桂通.孤波在非线性弹性杆中的传播[J].应用数学与力学,1986,7(7):571-582.
  • 4张善元 庄蔚.非线性弹性杆的应变孤波.力学学报,1988,20(1):58-66.
  • 5Seyler C E, Fanstermacher D L. A Symmetric Rugularized Long Wave Equation[J]. Phys. Fluids,1984, 27(1) : 4-7.
  • 6Guo Boling. The Spectral Method of Symmetic Rugularized Wave Equations[J]. J. Comp. Math. , 1987,5(4):297-306.
  • 7朱位秋.弹性杆中的非线性波[J].固体力学学报,1980,1(2):247-253.
  • 8Zhou Yulin. Applications of Discrete Functional Analysis to the Finite Difference Method[M]. Beijing: International Academic Publisher, 1990:2-3.
  • 9王震,谢树森.解四阶拟线性波动方程的一类二阶差分格式[J].中国海洋大学学报(自然科学版),2004,34(2):330-336. 被引量:4

二级参考文献1

共引文献33

同被引文献29

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部