期刊文献+

基于核估计及多元阿基米德Copula的投资组合风险分析 被引量:26

Risk Analysis of Portfolio Investment Based on Kernel Estimation and Multivariate Archimedean Copula
原文传递
导出
摘要 在研究金融资产的组合风险分析中,描述多个金融资产间的相关结构是选择最优组合权重的关键因素之一,如何准确地刻画金融资产间的非对称尾部相关结构,在定量研究组合资产的风险分析中尤其重要。利用多元阿基米德Copula捕捉多个金融资产间的相关结构,并用非参数核密度估计描述单个金融资产的边缘分布,建立Copula-Kernel模型。利用该模型和VaR风险测度,对中国股票市场的实际组合投资问题进行风险分析,并在风险最小原则下,给出不同置信水平下的最小VaR值及其对应的最优组合权重系数。 In modern portfolio optimization and risk management theory, it has been well known that the dependence among financial asset returns is one of the key factors in choosing optimal portfolio weights. Especially, it is very important to portray the asymmetric dependence among financial asset returns in studying the portfolio investment quantitatively. In this paper, the multivariate Archimedean Copula is used to analyze the asymmetric dependence structure among financial asset returns, whose marginal processes are captured by nonparametric kernel density estimation. Then, a Copula-Kernel model is built for risk analysis of portfolio investment. By this model and the risk measure VaR, empirical portfolio risk analysis is made in Chinese stock market. At last, the mini- VaR value of different confidence levels and the relative optimal investment weights are given under the principle of mini, risk.
出处 《管理科学》 CSSCI 2007年第5期92-96,F0003,共6页 Journal of Management Science
基金 国家自然科学基金(70471050)
关键词 阿基米德COPULA 核密度 非参数估计 投资组合 风险价值 Archimedean Copula kernel density nonparametric estimation portfolio investment VaR
  • 相关文献

参考文献20

  • 1Embrechts P, McNeil A, Straumann D. Correlation and Dependence in Risk Management:Properties and Pitfalls [C]//Risk Management:Value at Risk and Beyond. Cambridge University Press, 1999,176-223.
  • 2Claudio Romano. Calibrating and Simulating Copula Functions : An Application to the Italian Stock Market [R]. CIDEM, 2002b.
  • 3Joshua V Rosenberg, Til Schuermann. A General Approach to Integrated. Risk Management with Skewed, Fat-tailed Risks [J]. Journal of Financial Economics, 2006,79(3):569-614.
  • 4Andrew J Patton. Modelling Asymmetric Exchange Rate Dependence [J]. International Economic Review, 2006,47(2):527-556.
  • 5Andrew J Patton. Application of Copula Theory in Financial Econometrics [D]. Department of Economics. University of California. San Diego, 2002.
  • 6Helder Parra Palaro, Luiz Koodi Hotta. Using Conditional Copula to Estimate Value at Risk [J]. Journal of Data Science, 2006,4(1):93-115.
  • 7Mendes B V M, Kolev Nikolai, Anjos U. Copulas : A Review and Recent Developments [J]. Stochastic Models, 2006,22(4):617-660.
  • 8张尧庭.连接函数(copula)技术与金融风险分析[J].统计研究,2002,19(4):48-51. 被引量:296
  • 9韦艳华,张世英.金融市场的相关性分析——Copula-GARCH模型及其应用[J].系统工程,2004,22(4):7-12. 被引量:159
  • 10张明恒.多金融资产风险价值的Copula计量方法研究[J].数量经济技术经济研究,2004,21(4):67-70. 被引量:59

二级参考文献74

  • 1吴振翔,叶五一,缪柏其.基于Copula的外汇投资组合风险分析[J].中国管理科学,2004,12(4):1-5. 被引量:50
  • 2韦艳华,张世英,郭焱.金融市场相关程度与相关模式的研究[J].系统工程学报,2004,19(4):355-362. 被引量:83
  • 3[1]Nelsen, R. B (1998), An Introduction to Copulas, Lectures Notes in Statistics, 139,Springer Verlag, New York.
  • 4[2]Embrechts, P., Lindskog, F. And McNeil, A. (2001), Modelling Dependence with Copulas and Applications to Risk Management. Dept. of Math. CH-8092, Zürich, Switzerland.
  • 5[3]Bouyé, E. (2000), Copulas for Finance, A Reading Guide and Some Applications. City University Business School,London.
  • 6J Bessis . Risk Management in Banking [MI, Wiley & Sons, New York, 1998.
  • 7E Bouye. Copulas for Finance, A Reading Guide and Some Applications, Working Paper, City University Business School, Love, ndon, 2000.
  • 8P G Hoel. Introduction to Mathernatical Statistics [M], Wiley & Sons, New York, 1984.
  • 9J Hull, A White . Value at Risk When Daily Changes in Market Variables Are Not Normally Distributed [J], 《Journal of Derivatives》, 5, 9-19 (1998) .
  • 10D X Li. Value at Risk based on the Volatility, Skecewess and Kurtosis, Technical Report, Riskmetrics Group, (1999) .

共引文献495

同被引文献225

引证文献26

二级引证文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部