期刊文献+

失效概率计算的截断重要抽样法 被引量:5

Improving Further Importance Sampling(IS) Method for Failure Probability Estimation
下载PDF
导出
摘要 在结构可靠性分析中,传统的重要抽样法通过将抽样中心移到设计点处,从而提高了抽样效率。在传统的重要抽样方法基础上,通过引入截断的重要抽样函数,提出了失效概率计算的截断重要抽样法。与传统的重要抽样法相比,所提方法将重要抽样的区域控制在以均值点为球心的超球之外,从而进一步提高了抽样效率。推导了截断重要抽样方法的失效概率估计值的方差和变异系数计算公式。算例结果表明:在相同的抽样次数下,截断重要抽样法比传统的重要抽样法具有更小的失效概率估计值变异系数,而在相同的计算精度下,截断重要抽样法所需的样本数更小,这说明截断重要抽样法比传统重要抽样法具有更高的效率。 Aim: In structural reliability analysis, the traditional IS method can improve the sampling efficiency by moving the sampling center to the design point. We now present a truncated IS method that can further improve the traditional IS method. In the full paper we explain in some detail our truncated IS method; in this abstract, we just add some pertinent remarks to listing the two topics of explanation. The first topic is.. the traditional IS method based on design point. The aim of the first topic is to facilitate the explanation of our truncated IS method. The second topic is: the truncated IS method. Its three subtopics are: the estimation of failure probability in truncated IS method (subtopic 2. 1), the coefficient of variance (COV) of the estimated failure probability (subtopic 2. 2) and the procedure of the truncated IS method (subtopic 2.3). In subtopic 2.1, we explain that the improved IS method adopts the truncated IS function to generate the importance samples outside a special hypersphere, which takes the mean point as the center of the hypersphere. In subtopic 2.2, we give eq. (14) in the full paper as the formula for calculating the COV. In subtopic 2. 3, we give a 5-step procedure for truncated IS method. Finally we give three numerical examples, whose calculated results are given in Tables 1, 3 and 5 in the full paper. These results show preliminarily that, compared with the traditional IS method , the truncated IS method is more efficient in the following two cases: (1) in the case that the samples of the two methods are the same, the proposed truncated IS method has smaller COV of the failure probability estimation; (2) in the case that the precisions of two methods are the same, the proposed method needs less samples.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2007年第5期752-756,共5页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(10572117) 新世纪人才支持计划(NCET-05-0868)资助
关键词 重要抽样法 失效概率 结构 importance sampling (IS), failure probability, coefficient of variance (COV)
  • 相关文献

参考文献9

  • 1Au S K.Probabilistic Failure Analysis by Importance Sampling Markov Chain Simulation.Journal of Engineering Mechanics,2004,130(3):303-311.
  • 2Au S K.,Beck J L.A New Adaptive Importance Sampling Scheme for Reliability Calculations.Structural Safety,1999,21 (2):139-163.
  • 3吴建成,吴剑国,吴亚舸.一种基于马尔可夫链模拟样本的自适应重要样本法[J].华东船舶工业学院学报,2003,17(3):8-12. 被引量:16
  • 4贡金鑫,何世钦,赵国藩.结构可靠度模拟的方向重要抽样法[J].计算力学学报,2003,20(6):655-661. 被引量:18
  • 5Bjerager P.Probability Integration by Directional Simulation.Journal of Engineering Mechanics ASCE,1988,114(8):285-302.
  • 6吴剑国,金伟良,吴亚舸.结构系统可靠性计算的方向概率法[J].海洋工程,2004,22(2):62-65. 被引量:5
  • 7Rosenblatt M.Remarks on a Multivariate Transformation.Ann Math Stat,1952,23(3):470-472.
  • 8Nataf A.Détermination des Distributions de Probabilités dont les Marges Sont Données.Comptes Rendus Hebdomadaires des Séances de L′Académie des Sciences,1962,255:42-43.
  • 9Nowak A S,Collins K R.Reliability of Structures.重庆:重庆大学出版社,2005.

二级参考文献13

  • 1孙海虹.结构可靠性分析改进的重要抽样法[J].武汉交通科技大学学报,1994,18(3):241-246. 被引量:4
  • 2金伟良.结构可靠度数值模拟的新方法[J].建筑结构学报,1996,17(3):63-72. 被引量:23
  • 3AU S K,BECK J L. A new adaptive importance sampling scheme for reliability calculations[J]. Structural Safety,1999(21) : 135-- 158.
  • 4Jinsuo Nie,Bruce R Ellingwood.Directional methods for structural reliability analysis[J]. Structural Safety, 2000,22:
  • 5Hohenbichier M, Rackwitz R. Improvement ofSecond-Order reliability estimates by importance sampling[J]. Journal of Engineering Mechanics, 1988,114(12):2195-2199.
  • 6Fujita M, Rackwitz R. Updating first-order relia-bility estimates by importance sampling[J]. Stru-ctural Engineering and Earthquake Engineering, 1988,5(1):31-37.
  • 7Maes M A, Breitung K, Dupuis D J. Asymptotic importance sampling[J]. Structural Safety, 1993,12(3):167-186.
  • 8Deák I. Three digit accurate multiple normal proba-bilities[J]. Numerische Mathematik, 1980,35(4):369-380.
  • 9Ditlevsen O, Olesen R, Mohr M. Solution of a class of load combination problems by directional simulation[J]. Structural Safety, 1987,4(2):95-109.
  • 10Bjerager P. Probability integration by directionalsimulation[J]. Journal of Engineering Mechanics Division,1988,114(18):1285-1302.

共引文献29

同被引文献46

  • 1张晓军,常新龙,杨青.利用改进的Monte-Carloβ球法计算结构可靠性[J].强度与环境,2005,32(2):52-56. 被引量:3
  • 2刘成立,吕震宙,徐有良.粉末冶金涡轮盘裂纹扩展可靠性分析方法[J].稀有金属材料与工程,2006,35(2):232-236. 被引量:8
  • 3易平.对区间不确定性问题的可靠性度量的探讨[J].计算力学学报,2006,23(2):152-156. 被引量:23
  • 4宋述芳,吕震宙,傅霖.基于线抽样的可靠性灵敏度分析方法[J].力学学报,2007,39(4):564-570. 被引量:20
  • 5Melchers R E, Ahammed M. Gradient estimation for applied Monte Carlo analysis[J]. Reliability Engineering and System Safety, 2002,78(3) : 283-288.
  • 6Au S K, Beck J L. A new adaptive important sampling scheme for reliability calculations[J]. Structural Safety, 1999,21(2) : 139-163.
  • 7Schueller G I, Pralwarter H J, Koutsourelakis P S. A critical appraisal of reliability estimation procedures for high dimensions[J]. Probabilistic Engingeering Mechanic, 2004,19 (4) : 463-474.
  • 8Rosenblatt M. Remarks on a multivariate transformation[J]. Annals of Mathematical Statistics, 1952, 23(3) :470-472.
  • 9Schuller G I, Pradlwarter H J, Koutsourelakis P S. A comparative study of reliability estimation proce- dures for high dimension[A]. 16th ASCE Engineering Mechanics Conference[C]. University of Washington, Seattle,2003,16-18.
  • 10Melchers R E, Ahammed M, Middleton C. FORM for discontinuous and truncated probability density functions[J]. Structural Safety, 2003,25 (3) : 305- 313.

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部