期刊文献+

跳-扩散价格过程下有交易成本的期权定价研究 被引量:2

A Study on Option Pricing with Transaction Cost When Underlying Asset Pricing Is a Jump-diffusion Process
原文传递
导出
摘要 Black-Scholes模型成功解决了完全市场下的欧式期权定价问题.研究在不完全市场下的一类期权定价问题,即在假设交易过程有交易成本且标的资产价格服从跳-扩散过程下,推导出了在该模型下期权价格所满足的微分方程. Black-Scholes model has solved European option pricing in efficient market successfully. However, this paper studies option pricing model in an inefficient market, that is, with the assumptions that the underlying asset pricing is a jump-diffusion process and there is transaction cost in the transaction, we obtain the differential equation of the option pricing model.
出处 《数学的实践与认识》 CSCD 北大核心 2007年第21期11-16,共6页 Mathematics in Practice and Theory
基金 安徽省高校青年教师资助项目(2007jql177)
关键词 Black—Scholes模型 期权定价 交易成本 跳-扩散过程 Black-Scholes model option pricing transaction cost jump-diffusion process
  • 相关文献

参考文献11

  • 1Black F, Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81(7):637-655.
  • 2张利兵,潘德惠.标的股票价格服从跳跃-扩散过程的期权套期保值率确定[J].系统工程理论方法应用,2005,14(1):23-27. 被引量:11
  • 3Barles G, Mete H. Option pricing with transaction costs and a nonlinear Black-Scholes equation[J]. Journal of Stochast, 1998,72(2) :369-397.
  • 4Davis M H A, Clark J M C. A note on super-replication strategies[J]. Phil Trans Roy Soe London, A,1994,347: 485-494.
  • 5Soner H M, Shreve S E, Cvitani c J. There is no notrivial hedging portfolio for option pricing with transaction costs[J]. Ann Appl Prob,1995,5:327-355.
  • 6Levental S, Skorohod A V. On the possibility of hedging options in presence of transaction cost[J]. Ann Appl Prob.1997,7:410-443.
  • 7Leland H E. Option pricing and replication with transaction cost [J]. J Finance, 1985,40 : 1283-1301.
  • 8Ben.said B, Le.sne J P, Pages H. Derivative asset pricing with transaction costs[J]. Math Finance,1992,2:63-68.
  • 9Lo A M, Mackinlary A C. Stock market prices do not follow random walks: evidence from a simple specification test[J]. Review of Financial Studies,1988,1:41-66.
  • 10马超群,陈牡妙.标的资产服从混合过程的期权定价模型[J].系统工程理论与实践,1999,19(4):41-46. 被引量:24

二级参考文献20

  • 1唐小我,曾勇.最小风险外汇套期保值率的确定方法[J].预测,1995,14(4):45-46. 被引量:1
  • 2薛兴恒.数学物理偏数分方程[M].合肥:中国科技大学出版社,1995..
  • 3郑明川.最小风险套期保值比率方法[J].系统工程理论与实践,1997,17(6):132-134. 被引量:19
  • 4薛兴恒,数学物理偏数分方程,1995年
  • 5龚光鲁,随机微分方程引论,1995年
  • 6Merton R C. Option pricing when underlying stock returns are discontinuous[J]. Journal of Economics,1976, (3) : 123- 141.
  • 7Scott L O. Pricing stock options in a jump-diffusion model with stochastic volatility and interest rates:applications of Fourier inversion methods[J]. Journal of Mathematical Finance, 1997, (4) : 413- 426.
  • 8David S Bates. Jumps and stochastic volatility: exchange rate processes implicit in deutsche mark options [J]. The Review of Financial Studies, 1996,(1):69-107.
  • 9Johnson L L. The theory of hedging and speculation in commodity futures[J]. Review of Economic Studies, 1960,27:139-151.
  • 10Ederington L. The hedging performance of the new futures markets [J]. Journal of Finance, 1979,34:157-170.

共引文献32

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部