期刊文献+

热力循环及总能系统学科发展战略思考 被引量:6

CONSIDERATION OF STRATEGIC DEVELOPMENT OF THERMAL CYCLES AND INTEGRATED ENERGY SYSTEMS
原文传递
导出
摘要 热力循环与总能系统是本世纪能源与环境科学的主要议题之一,也是在国家中长期科技规划中位于优先领域的需要关注的重点。本文分析了该学科的地位和作用,指出了学科交叉的发展特点,提出了学科发展方向:能的梯级利用与热力循环创新、能量释放的新机理、中低温能源转换利用与正逆耦合循环、多能源综合互补系统、控制污染排放的新途径。本文提出的热力循环与总能系统发展战略旨在开辟节约能源、能源与环境协调发展的新方向。 Research on thermal cycles and integrated energy systems is one of the important subjects for energy and environmental science, which is also emphasized in the National Mid-to-Long Term Plan for S&T. Based on the identification of the role of thermal cycles and integrated energy systems, this report points out new tendency for sustainable development, including cascade utilization of energy, new approaches of energy release, mid-and low-temperature energy utilization, multi-energy integration system, principles of greenhouse gas control technologies. The key pointed out here aims to opening up the promising prospects for thermal cycles and integrated energy systems to utilize energy effectively and resolve energy and environmental problems simultaneously.
出处 《中国科学基金》 CSCD 北大核心 2007年第6期327-332,共6页 Bulletin of National Natural Science Foundation of China
关键词 总能系统 能量释放新机理 系统集成创新 学科发展战略 Integrated energy system, New mechanism of energy release, Principle of system synthesis, Scientific strategy
  • 相关文献

参考文献5

  • 1Panel on Energy Research and Development. Report to the President on Federal Energy Research and Development for the Challenges of the Twenty-first Century. President's Committee of Advisors on Science and Technology. 1997.
  • 2国家基础研究“十五”计划和2015年远景规划:能源科学<科学发展与优先领域>调研报告.2001年.
  • 3金红光,洪慧,王宝群,韩巍,林汝谋.化学能与物理能综合梯级利用原理[J].中国科学(E辑),2005,35(3):299-313. 被引量:54
  • 4蔡睿贤,金红光,林汝谋.能源动力系统与环境协调的探索.21世纪100个交叉科学难题.北京:科学出版社,2005,366-371.
  • 5金红光.温室气体控制一体化原理.21世纪100个交叉科学难题.北京:科学出版社,2005,173-179.

二级参考文献25

  • 1蔡睿贤 金红光 林汝谋.21世纪100个交叉科学:能源动力系统与环境协调相容的难题[M].北京:科学出版社,2005.366-371.
  • 2Klaeyle M M S, Laurent R, Nandjee F. New cycles for methanol-fuels gas turbines. ASME Paper 83-GT-60,1983.
  • 3Davies D G, Woodley N H, Foster-Pegg R W, et al. Improved combustion turbine efficiency with reformed alcohol fuels. ASME Paper 83-GT-60, 1983.
  • 4Cai R. Alcohol fuel gas turbines and its efficiency. Proceedings of the Eighth International Symposium on Alcohol Fuel, 1988.
  • 5Carapellucci R, Cau G, Cipollone R. Capabilities of the internal heat recovery for increasing the efficiency of gas turbine power plants. ASME Cogen-Turbo Power, Bournemouth, September, 1993.21-23.
  • 6Kesser K F, Hoffman M A, Baughn J W. Analysis of a basic chemically recuperated gas turbine power Plant. ASME J Engineering for Gas Turbines and Power, 1994, 116: 277-284.
  • 7Harvey Simon, Kane N^+ Diaye. Analysis of a gas turbine cycle with chemical recuperation using ASPEN.Proceedings of the Inter Conference ECOS 1996, STOCKHOLM, SWEDEN, 1996. 297-304.
  • 8Abdallah H, Facchini B. Part load performance of chemically recuperated gas turbine compared to other advanced cycle. ASME TURBO-EXPO'98 Conference, Stockholm, Sweden, 1998.
  • 9Okazaki K, Kishida T, Ogawa K, et al. Direct conversion from methane to methanol for high efficiency energy system with exergy regeneration. ECOS 1999, Tokyo, 1999. 300-305.
  • 10Ishida M. Thermodynamics Made Comprehensible. New York: Nova Science Publishers Inc, 2002.

共引文献53

同被引文献44

引证文献6

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部